机器学习基础-概率图模型

(一阶)马尔科夫模型的基本概念

状态、状态转换概率、初始概率


状态转移矩阵的基本概念


隐马尔可夫模型(HMM)的基本概念


条件随机场(CRF)的基本概念

实际应用中的马尔科夫性

  • 自然语言处理

    • 在词性标注、命名实体识别等任务中,句子中的词语通常被视为一个序列,每个词的词性标签只依赖于前后几个词的标签,这可以通过马尔科夫模型来建模。
  • 金融预测

    • 股票价格走势有时被假设为具有马尔科夫性,即今天的股价变化主要取决于昨天的收盘价,而不是更早的历史数据。
  • 生物信息学

    • DNA 序列中的碱基排列可以看作是一个马尔科夫链,用于基因预测和功能注释。

HMM和CRF的比较

特性隐马尔科夫模型 (HMM)条件随机场 (CRF)
模型类型生成式模型:建模联合概率 P(X,Y)判别式模型:直接建模条件概率 $P(Y
依赖关系观测值仅依赖于当前隐藏状态;隐藏状态遵循马尔科夫性允许更复杂的依赖结构,包括观测值之间的依赖
特征函数固定特征,主要为状态转移概率和发射概率支持丰富的特征函数,可以捕捉复杂的关系
标记偏置问题容易出现标记偏置问题通过全局优化避免标记偏置
适用场景更适合观测值独立的任务,如语音识别中的音素分类更适用于需要考虑上下文信息的任务,如词性标注、命名实体识别
灵活性与表达能力结构简单,参数较少,数据量有限时可能更稳定提供更高的灵活性和表达能力,但需注意过拟合风险

主题模型(Topic Model)的基本概念

  • 主要用于自然语言处理NLP
  • 样本为文档,特征为词语
  • 用于从众多文档中发现隐藏的语义主题,相当于对文档聚类,并发现不同词语对不同主题的贡献程度
  • 无监督学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值