深度学习基础:线性代数本质4——矩阵乘法

两个矩阵相乘的意义就是复合变换

1. 复合变换

例如先进行旋转变换再进行剪切变换,这很明显是两个变换,但是从总体上看可以看作是一个复合变换,是旋转和剪切作用的总和。

和其他线性变换一样,我们也可以通过记录变换后的 i j 来实现,并用矩阵完全描述这个复合变换\begin{pmatrix} 1 &-1 \\ 1 &0 \end{pmatrix}这一新的矩阵捕捉到了两个变换的总体效应,但它的确是一个单独的作用

两个矩阵相乘的几何意义便浮现出来了

需要注意的是,上面的矩阵相乘需要从右往左读,首先应用右边矩阵所描述的变换,然后再应用左矩阵所描述的变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值