GNN——A Gentle Introduction to Graph Neural Networks

目录

BG

        数据如何表示成图

        图上面可以定义什么样的问题

        机器学习用到图上有什么挑战

GNN

        简单情况

        信息传递

GNN playground

调参

         具体分析

其他相关问题

        特殊图

        如何采样和batch

        inductive biases

        aggregation操作


原文链接:A Gentle Introduction to Graph Neural Networks

BG

        图表示:实体和实体之间的关系

  • V->vertex(or node) 用向量来描述顶点属性
  • E->Edge(or link)  用向量来描述边属性
  • U->Global(or naster node) 用向量来描述全局属性

        数据如何表示成图

        1.图片表示为图

        244x244x3,一般来说会表示成三个维度的tensor,输入卷积神经网络

        当作图:每个像素是一个点,邻接就有边

        2.文本表示为图 

        文本可以认为是一个序列,一个词是一个顶点,一个词与下一个词之间有一条有向边

        3.分子表示为图

        4.社交网络表示为图

        图上面可以定义什么样的问题

        1.图层面的问题 

        2.顶点层面的问题

        3.边层面的问题

        机器学习用到图上有什么挑战

        怎么表示图让他跟神经网络兼容

        邻接表稀疏(高效计算稀疏矩阵能力不ok,特别是把计算稀疏矩阵用到GPU上面一直是一个比较难的问题),而且邻接表旋转前/后会影响网络的输出:旋转前/后的输入自然不同,但我们要求其给网络后的结果理应一样。所以使用邻接列表存储,得到高效存储和顺序/旋转无影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值