目录
原文链接:A Gentle Introduction to Graph Neural Networks
BG
图表示:实体和实体之间的关系
- V->vertex(or node) 用向量来描述顶点属性
- E->Edge(or link) 用向量来描述边属性
- U->Global(or naster node) 用向量来描述全局属性
数据如何表示成图
1.图片表示为图
244x244x3,一般来说会表示成三个维度的tensor,输入卷积神经网络
当作图:每个像素是一个点,邻接就有边
2.文本表示为图
文本可以认为是一个序列,一个词是一个顶点,一个词与下一个词之间有一条有向边
3.分子表示为图
4.社交网络表示为图
图上面可以定义什么样的问题
1.图层面的问题
2.顶点层面的问题
3.边层面的问题
机器学习用到图上有什么挑战
怎么表示图让他跟神经网络兼容
邻接表稀疏(高效计算稀疏矩阵能力不ok,特别是把计算稀疏矩阵用到GPU上面一直是一个比较难的问题),而且邻接表旋转前/后会影响网络的输出:旋转前/后的输入自然不同,但我们要求其给网络后的结果理应一样。所以使用邻接列表存储,得到高效存储和顺序/旋转无影响。