error: unrecognized arguments: -f

背景:
1.代码:
def _parse_args(self):
parser = argparse.ArgumentParser(description=“Eval the model”)
parser.add_argument(
“–model_name_or_path”,
type=str,
help=“path or model”,
default=“jeffding/bark-openmind”,
)
args = parser.parse_args()
return args
2.报错:
usage: ipykernel_launcher.py [-h] [--model_name_or_path MODEL_NAME_OR_PATH]
ipykernel_launcher.py: error: unrecognized arguments: -f /home/openmind/.local/share/jupyter/runtime/kernel-69dba323-065d-4f09-b489-41891f901294.json
An exception has occurred, use %tb to see the full traceback.
SystemExit: 2

**原因:**在 Jupyter Notebook 中运行 argparse 时,它会尝试解析 Jupyter 自动添加的内核参数(如 -f /path/to/kernel.json),但您的解析器没有定义这些参数,导致错误。

解决方法:
完整修复方案

def _parse_args(self):
    # 创建解析器时禁用默认的 sys.argv 使用
    parser = argparse.ArgumentParser(
        description="Eval the model",
        add_help=False  # 禁用默认的 -h/--help 参数
    )
    
    # 添加自定义参数
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="path or model",
        default="jeffding/bark-openmind",
    )
    
    # 手动指定参数列表(空列表表示不使用任何命令行参数)
    args, _ = parser.parse_known_args(args=[])
    return args

-------在Jupyter notebook成功解决,没解决的继续看下面的------------------------------------------
详解:
这个错误发生在 Jupyter Notebook 环境中,因为 argparse 模块尝试解析 Jupyter 自动传递的内核参数。让我提供完整的修复方案:

根本原因

在 Jupyter Notebook 中运行 argparse 时,它会尝试解析 Jupyter 自动添加的内核参数(如 -f /path/to/kernel.json),但您的解析器没有定义这些参数,导致错误。

完整修复方案

def _parse_args(self):
    # 创建解析器时禁用默认的 sys.argv 使用
    parser = argparse.ArgumentParser(
        description="Eval the model",
        add_help=False  # 禁用默认的 -h/--help 参数
    )
    
    # 添加自定义参数
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="path or model",
        default="jeffding/bark-openmind",
    )
    
    # 手动指定参数列表(空列表表示不使用任何命令行参数)
    args, _ = parser.parse_known_args(args=[])
    return args

替代方案:完全避免使用 argparse

更好的解决方案是重构代码,完全避免在类中使用 argparse

class SignLanguageTranslator:
    def __init__(self, model_name="jeffding/bark-openmind"):
        self.model_name = model_name
        self._init_model()
    
    def _init_model(self):
        """初始化模型,避免每次调用都加载"""
        # 设置设备
        if torch.npu.is_available():
            self.device = "npu"
        elif torch.cuda.is_available():
            self.device = "cuda"
        else:
            self.device = "cpu"
        print(f"Using device: {self.device}")
        
        # 加载模型
        self.processor = AutoProcessor.from_pretrained(self.model_name)
        self.model = AutoModel.from_pretrained(self.model_name).to(self.device)
        print(f"模型 {self.model_name} 加载完成")
        
    # 其他方法保持不变...

在 Jupyter 中使用的方法

# 创建实例时直接指定模型
translator = SignLanguageTranslator(model_name="jeffding/bark-openmind")

# 或者使用默认模型
translator = SignLanguageTranslator()

# 生成音频
audio = translator.text_to_speech_suno("你的歌词文本")

为什么这是更好的解决方案?

  1. 避免环境依赖问题:完全消除与 Jupyter 内核参数的冲突
  2. 更清晰的代码结构:参数直接通过构造函数传递,而非解析命令行
  3. 更好的可重用性:可在各种环境(脚本、Web 应用、Jupyter)中使用
  4. 更易调试:没有隐藏的命令行参数解析

如果必须保留 argparse 功能

如果您需要支持命令行参数(当作为脚本运行时),可以这样修改:

def _parse_args(self):
    # 仅在直接运行脚本时解析真实参数
    if 'ipykernel' not in sys.modules:
        parser = argparse.ArgumentParser(description="Eval the model")
        parser.add_argument(
            "--model_name_or_path",
            type=str,
            default="jeffding/bark-openmind",
        )
        return parser.parse_args()
    else:
        # 在 Jupyter 中使用默认值
        class Args:
            model_name_or_path = "jeffding/bark-openmind"
        return Args()

然后在类初始化中使用:

def __init__(self):
    self.args = self._parse_args()
    self._init_model(self.args.model_name_or_path)

这个解决方案既保留了命令行参数支持,又确保在 Jupyter 中不会出错。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值