Matplotlib数据可视化实战:Matplotlib图表绘制基础

Matplotlib基本图表绘制实战

学习目标

通过本课程的学习,学员将掌握使用Matplotlib库绘制线图、条形图和散点图的基本方法,了解如何调整图表的样式和布局,以及如何保存图表。

相关知识点

  • Matplotlib库绘制图

学习内容

1 Matplotlib库绘制图

1.1 线图绘制

线图是最常见的图表类型之一,用于展示数据随时间或其他连续变量的变化趋势。在Matplotlib中,绘制线图非常简单,主要使用plot()函数。可以通过调整参数来改变线条的颜色、宽度、样式等,以满足不同的可视化需求。

1.1.1 基本线图绘制

首先,需要导入Matplotlib库中的pyplot模块,通常习惯将其简写为plt。然后,定义x轴和y轴的数据,使用plot()函数绘制线图。

%pip install matplotlib
#下载所需要的字体文件
!wget https://model-community-picture.obs.cn-north-4.myhuaweicloud.com/ascend-zone/notebook_datasets/48a991cc2fca11f094a3fa163edcddae/dingliesongtypeface20241217-2.ttf
import matplotlib.pyplot as plt

# 定义x轴和y轴的数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# 绘制线图
plt.plot(x, y)

# 显示图表
plt.show()

这段代码将生成一个简单的线图,x轴和y轴的数据分别对应列表xyplt.show()函数用于显示图表。

1.1.2 调整线图样式

Matplotlib提供了丰富的参数来调整线图的样式,如颜色、线型、线宽等。可以通过在plot()函数中添加参数来实现这些调整。

# 绘制线图,设置线条颜色为红色,线型为虚线,线宽为2
import matplotlib.font_manager as fm
plt.plot(x, y, color='red', linestyle='--', linewidth=2)
font_path = './dingliesongtypeface20241217-2.ttf'  # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('线图示例', fontproperties=font_prop)
plt.xlabel('X轴', fontproperties=font_prop)
plt.ylabel('Y轴', fontproperties=font_prop)

# 显示图表
plt.show()

在这个例子中,通过color参数设置了线条颜色为红色,linestyle参数设置了线型为虚线,linewidth参数设置了线宽为2。此外,还使用title()xlabel()ylabel()函数添加了图表的标题和轴标签。

1.2 条形图绘制

条形图用于比较不同类别的数据,可以直观地展示数据的大小关系。在Matplotlib中,绘制条形图主要使用bar()函数。

1.2.1 基本条形图绘制

首先定义类别和对应的数据,然后使用bar()函数绘制条形图。

# 定义类别和对应的数据
categories = ['A', 'B', 'C', 'D']
values = [10, 15, 7, 10]

# 绘制条形图
plt.bar(categories, values)
font_path = './dingliesongtypeface20241217-2.ttf'  # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('条形图示例', fontproperties=font_prop)
plt.xlabel('类别', fontproperties=font_prop)
plt.ylabel('值', fontproperties=font_prop)

# 显示图表
plt.show()

这段代码将生成一个基本的条形图,类别和对应的数据分别对应列表categoriesvaluesplt.bar()函数用于绘制条形图,plt.title()plt.xlabel()plt.ylabel()函数用于添加图表的标题和轴标签。

1.2.2 调整条形图样式

可以通过调整bar()函数的参数来改变条形图的样式,如条形的颜色、宽度等。

# 绘制条形图,设置条形颜色为蓝色,条形宽度为0.5
plt.bar(categories, values, color='blue', width=0.5)
font_path = './dingliesongtypeface20241217-2.ttf'  # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('条形图示例', fontproperties=font_prop)
plt.xlabel('类别', fontproperties=font_prop)
plt.ylabel('值', fontproperties=font_prop)

# 显示图表
plt.show()

在这个例子中,通过color参数设置了条形颜色为蓝色,width参数设置了条形宽度为0.5。这些调整使得条形图更加美观和易读。

1.3 散点图绘制

散点图用于展示两个变量之间的关系,可以直观地看出数据点的分布情况。在Matplotlib中,绘制散点图主要使用scatter()函数。

1.3.1 基本散点图绘制

首先定义x轴和y轴的数据,然后使用scatter()函数绘制散点图。

# 定义x轴和y轴的数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# 绘制散点图
plt.scatter(x, y)
font_path = './dingliesongtypeface20241217-2.ttf'  # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('散点图示例', fontproperties=font_prop)
plt.xlabel('X轴', fontproperties=font_prop)
plt.ylabel('Y轴', fontproperties=font_prop)

# 显示图表
plt.show()

这段代码将生成一个基本的散点图,x轴和y轴的数据分别对应列表xyplt.scatter()函数用于绘制散点图,plt.title()plt.xlabel()plt.ylabel()函数用于添加图表的标题和轴标签。

1.3.2 调整散点图样式

可以通过调整scatter()函数的参数来改变散点图的样式,如点的颜色、大小等。

# 绘制散点图,设置点的颜色为绿色,点的大小为50
plt.scatter(x, y, color='green', s=50)
font_path = './dingliesongtypeface20241217-2.ttf'  # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('散点图示例', fontproperties=font_prop)
plt.xlabel('X轴', fontproperties=font_prop)
plt.ylabel('Y轴', fontproperties=font_prop)

# 显示图表
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值