Matplotlib基本图表绘制实战
学习目标
通过本课程的学习,学员将掌握使用Matplotlib库绘制线图、条形图和散点图的基本方法,了解如何调整图表的样式和布局,以及如何保存图表。
相关知识点
- Matplotlib库绘制图
学习内容
1 Matplotlib库绘制图
1.1 线图绘制
线图是最常见的图表类型之一,用于展示数据随时间或其他连续变量的变化趋势。在Matplotlib中,绘制线图非常简单,主要使用plot()
函数。可以通过调整参数来改变线条的颜色、宽度、样式等,以满足不同的可视化需求。
1.1.1 基本线图绘制
首先,需要导入Matplotlib库中的pyplot
模块,通常习惯将其简写为plt
。然后,定义x轴和y轴的数据,使用plot()
函数绘制线图。
%pip install matplotlib
#下载所需要的字体文件
!wget https://model-community-picture.obs.cn-north-4.myhuaweicloud.com/ascend-zone/notebook_datasets/48a991cc2fca11f094a3fa163edcddae/dingliesongtypeface20241217-2.ttf
import matplotlib.pyplot as plt
# 定义x轴和y轴的数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
# 绘制线图
plt.plot(x, y)
# 显示图表
plt.show()
这段代码将生成一个简单的线图,x轴和y轴的数据分别对应列表x
和y
。plt.show()
函数用于显示图表。
1.1.2 调整线图样式
Matplotlib提供了丰富的参数来调整线图的样式,如颜色、线型、线宽等。可以通过在plot()
函数中添加参数来实现这些调整。
# 绘制线图,设置线条颜色为红色,线型为虚线,线宽为2
import matplotlib.font_manager as fm
plt.plot(x, y, color='red', linestyle='--', linewidth=2)
font_path = './dingliesongtypeface20241217-2.ttf' # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('线图示例', fontproperties=font_prop)
plt.xlabel('X轴', fontproperties=font_prop)
plt.ylabel('Y轴', fontproperties=font_prop)
# 显示图表
plt.show()
在这个例子中,通过color
参数设置了线条颜色为红色,linestyle
参数设置了线型为虚线,linewidth
参数设置了线宽为2。此外,还使用title()
、xlabel()
和ylabel()
函数添加了图表的标题和轴标签。
1.2 条形图绘制
条形图用于比较不同类别的数据,可以直观地展示数据的大小关系。在Matplotlib中,绘制条形图主要使用bar()
函数。
1.2.1 基本条形图绘制
首先定义类别和对应的数据,然后使用bar()
函数绘制条形图。
# 定义类别和对应的数据
categories = ['A', 'B', 'C', 'D']
values = [10, 15, 7, 10]
# 绘制条形图
plt.bar(categories, values)
font_path = './dingliesongtypeface20241217-2.ttf' # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('条形图示例', fontproperties=font_prop)
plt.xlabel('类别', fontproperties=font_prop)
plt.ylabel('值', fontproperties=font_prop)
# 显示图表
plt.show()
这段代码将生成一个基本的条形图,类别和对应的数据分别对应列表categories
和values
。plt.bar()
函数用于绘制条形图,plt.title()
、plt.xlabel()
和plt.ylabel()
函数用于添加图表的标题和轴标签。
1.2.2 调整条形图样式
可以通过调整bar()
函数的参数来改变条形图的样式,如条形的颜色、宽度等。
# 绘制条形图,设置条形颜色为蓝色,条形宽度为0.5
plt.bar(categories, values, color='blue', width=0.5)
font_path = './dingliesongtypeface20241217-2.ttf' # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('条形图示例', fontproperties=font_prop)
plt.xlabel('类别', fontproperties=font_prop)
plt.ylabel('值', fontproperties=font_prop)
# 显示图表
plt.show()
在这个例子中,通过color
参数设置了条形颜色为蓝色,width
参数设置了条形宽度为0.5。这些调整使得条形图更加美观和易读。
1.3 散点图绘制
散点图用于展示两个变量之间的关系,可以直观地看出数据点的分布情况。在Matplotlib中,绘制散点图主要使用scatter()
函数。
1.3.1 基本散点图绘制
首先定义x轴和y轴的数据,然后使用scatter()
函数绘制散点图。
# 定义x轴和y轴的数据
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
# 绘制散点图
plt.scatter(x, y)
font_path = './dingliesongtypeface20241217-2.ttf' # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('散点图示例', fontproperties=font_prop)
plt.xlabel('X轴', fontproperties=font_prop)
plt.ylabel('Y轴', fontproperties=font_prop)
# 显示图表
plt.show()
这段代码将生成一个基本的散点图,x轴和y轴的数据分别对应列表x
和y
。plt.scatter()
函数用于绘制散点图,plt.title()
、plt.xlabel()
和plt.ylabel()
函数用于添加图表的标题和轴标签。
1.3.2 调整散点图样式
可以通过调整scatter()
函数的参数来改变散点图的样式,如点的颜色、大小等。
# 绘制散点图,设置点的颜色为绿色,点的大小为50
plt.scatter(x, y, color='green', s=50)
font_path = './dingliesongtypeface20241217-2.ttf' # 替换为对应的字体文件路径
font_prop = fm.FontProperties(fname=font_path)
# 添加标题和轴标签
plt.title('散点图示例', fontproperties=font_prop)
plt.xlabel('X轴', fontproperties=font_prop)
plt.ylabel('Y轴', fontproperties=font_prop)
# 显示图表
plt.show()