一、题目
给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, …, aaz, aba, abb, …, abz, …, zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
二、方法1
1、思路
可以将这个题看作26进制,然后进行计算:
- 最后一个数是 26L - 1,那么倒数第 N 个数就是 26L - N;
- n 进制的数 x 第 i 位的值为:x / ni-1;
- 然后分别计算26进制下的 N 的每一位,最后分别加上 ‘a’ 即为所求。
2、代码