Spark安装和编程实践(Spark2.4.0)

本文详细介绍了在Ubuntu系统上安装和配置Hadoop、Spark、HBase及Zookeeper的过程,包括单机和伪分布式模式。接着,讲解了如何使用SparkShell进行编程,包括加载文件、RDD操作等。最后,通过sbt和Maven对Scala和Java独立应用程序进行编译打包,并通过spark-submit运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

Ubuntu常见基本问题
Hadoop3.1.3安装(单机、伪分布)
Hadoop集群搭建
HBase2.2.2安装(单机、伪分布)
Zookeeper集群搭建
HBase集群搭建
Spark安装和编程实践(Spark2.4.0)
Spark集群搭建

前置条件

  • Hadoop伪分布
  • JDK

一、安装 Spark2.4.0

  1. 先把压缩格式的文件spark-2.4.0-bin-without-hadoop.tgz下载到本地电脑,然后保存在“下载”中
  2. 解压安装包spark-2.4.0-bin-without-hadoop.tgz至路径 /usr/local,命令如下
sudo tar -zxf ~/下载/spark-2.4.0-bin-without-hadoop.tgz -C /usr/local/
cd /usr/local
sudo mv ./spark-2.4.0-bin-without-hadoop/ ./spark
sudo chown -R hadoop:hadoop ./spark          # 此处的 hadoop 为你的用户名

1、配置spark-env.sh

cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
vim ./conf/spark-env.sh

在第一行增加

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)

2、启动

cd /usr/local/spark
bin/run-example SparkPi

成功啦!!!
在这里插入图片描述
执行时会输出非常多的运行信息,输出结果不容易找到,可以通过 grep 命令进行过滤(命令中的 2>&1 可以将所有的信息都输出到 stdout 中,否则由于输出日志的性质,还是会输出到屏幕中):

cd /usr/local/spark
bin/run-example SparkPi 2>&1 | grep "Pi is"

成功啦!!!
在这里插入图片描述

二、使用 Spark Shell 编写代码

1、启动Spark Shell

cd /usr/local/spark
bin/spark-shell

成功啦!!!启动spark-shell后,会自动创建名为sc的SparkContext对象和名为spark的SparkSession对象:
在这里插入图片描述

2、加载text文件

spark创建sc,可以加载本地文件和HDFS文件创建RDD。这里用Spark自带的本地文件README.md文件测试。

val textFile = sc.textFile("file:///usr/local/spark/README.md")

加载HDFS文件和本地文件都是使用textFile,区别是添加前缀(hdfs://和file:///)进行标识。

3、简单RDD操作

//获取RDD文件textFile的第一行内容
textFile.first()
//获取RDD文件textFile所有项的计数
textFile.count()
//抽取含有“Spark”的行,返回一个新的RDD
val lineWithSpark = textFile.filter(line => line.contains("Spark"))
//统计新的RDD的行数
lineWithSpark.count()

可以通过组合RDD操作进行组合,可以实现简易MapReduce操作

//找出文本中每行的最多单词数
textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)

4、退出

:quit

三、独立应用程序编程

1、使用sbt对Scala独立应用程序进行编译打包

① 安装sbt

  1. 先把压缩格式的文件sbt-1.3.8.tgz下载到本地电脑,然后保存在“下载”中
  2. 解压安装包sbt-1.3.8.tgz至路径 /usr/local,命令如下
sudo mkdir /usr/local/sbt                # 创建安装目录
cd ~/下载
sudo tar -zxvf ./sbt-1.3.8.tgz -C /usr/local
cd /usr/local/sbt
sudo chown -R hadoop /usr/local/sbt     # 此处的hadoop为系统当前用户名
cp ./bin/sbt-launch.jar ./  #把bin目录下的sbt-launch.jar复制到sbt安装目录下
  1. 接着在安装目录中使用下面命令创建一个Shell脚本文件,用于启动sbt:
vim /usr/local/sbt/sbt

内容为:

#!/bin/bash
SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
java $SBT_OPTS -jar `dirname $0`/sbt-launch.jar "$@"
  1. 保存后,还需要为该Shell脚本文件增加可执行权限:
chmod u+x /usr/local/sbt/sbt
  1. 使用如下命令查看sbt版本信息
cd /usr/local/sbt
./sbt sbtVersion

成功啦!!!(第一次时间可能有点长)
在这里插入图片描述
在这里插入图片描述

② Scala应用程序代码

  1. 先创建结构
cd ~           # 进入用户主文件夹
mkdir ./sparkapp        # 创建应用程序根目录
mkdir -p ./sparkapp/src/main/scala     # 创建所需的文件夹结构
  1. 在 ./sparkapp/src/main/scala 下建立一个名为 SimpleApp.scala 的文件(vim ./sparkapp/src/main/scala/SimpleApp.scala),添加代码如下:
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WE-ubytt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值