无向图的最大独立轨。
独立轨:设A、B是无向图G的两个顶点,从A到B的两条没有公共内部顶点的路径互称为独立轨。A到B的独立轨的最大条数,记作P(A,B)。
设A、B是无向图G的两个不相邻的顶点,最少要删除多少个顶点才使得A和B不再连通?答案是P(A,B)个。
关于无向图G顶点连通度K(G)与顶点独立轨之间的关系。
Menger定理:
K(G) = |V(G)| - 1 当G是完全图。
K(G) = min(P(A,B))当G不是完全图。
求P(A,B)方法如下。
(1)为了求P(A,B),需要构造一个容量网络。
1、原图G中的每个顶点v变成网络N中的两个顶点v'和v'',顶点v'到v''有一条弧连接,即<v',v''>,其容量为1。
2、原图G中的每条边e = (u, v),在网络N中有两条弧e' = <u'',v'>和e'' = <u',v''>,e'和e''的容量均为INF。
3、另A''为源点,B'为汇点。
(2)求从A''到B'的最大流。
(3)流出A''的一切弧的容量和sigma F(e),即为P(A,B),所以具有流量为1的弧(v',v'')对应的顶点构成了一个割顶集,在图G中去掉这些顶点后,则A和B不再连通了。
有了求P(A,B)的算法基础,就可以得出K(G)的求解思路:首先设K(G)的初始值为INF,然后分析图G中的每一对顶点,如果A、B不相邻,则用最大流的方法求出P(A,B)和对应的割顶集。如果P(A,B)小于当前的K(G),则K(G) = P(A,B);如此直到不相邻的顶点分析完为止,即可求出K(G)。
具体的实现时,我们可以固定一个源点,枚举每个汇点,从而求出K(G)。
实际上拆点、连边时,我们一般是把<u',u''>置1,<u'', v'>与<v'',u'>置INF。
附 POJ 1966源代码。