贝叶斯回归方法作为传统回归技术在贝叶斯统计学中的拓展,在各个专业领域中都有着广泛的应用。然而。贝叶斯回归结合了回归和贝叶斯思想,其计算方法和技术以及模型结果的解释都较为复杂,准确应用贝叶斯回归,打通学科专业与贝叶斯回归间的壁垒。
第一章 贝叶斯模型的步骤
1.贝叶斯定理
2.先验与后验分布
3.假设检验
4.模型选择
5.贝叶斯计算方法简介
第二章 积分嵌套拉普斯近似
1.隐高斯模型
2.高斯-马尔科夫随机场
3.拉普拉斯近似与INLA
第三章 INLA下的贝叶斯回归
1.线性回归的贝叶斯推断
2.预测模型
3.贝叶斯下的模型选择
4.稳定回归
5.方差分析
6.Ridge回归
7.计数数据与泊松回归
8.偏斜数据的伽马回归
9.零膨胀数据建模
10.负二项回归初步
第四章 多层贝叶斯回归
1.随机效应多层模型
2.嵌套效应多层模型
3.面板(测量)数据的多层模型
4.计数数据的多层模型
第五章 生存分析
1.分段线性风险模型
2.分层比例风险模型
3.加速失效模型
4.脆弱模型
5.面板与时间-事件数据的联合建模
第六章 随机游走非参数模型
1.光滑曲线模型
2.非高斯数据模型
3.罚曲线回归
4.广义非参数回归
第七章 广义可加模型
1.可加曲线回归
2.广义可加混合效应模型
3.计数数据的广义可加模型
第八章 极端数据的贝叶斯分析与其它
1.极值统计学简介
2.极值统计学的贝叶斯估计
3.基于INLA的密度估计
★ 点 击 下 方 关 注,获取海量教程和资源!
↓↓↓