基于R语言贝叶斯进阶:INLA下的贝叶斯回归、多层贝叶斯回归、生存分析、随机游走模型、广义可加模型、极端数据的贝叶斯分析等

贝叶斯回归方法作为传统回归技术在贝叶斯统计学中的拓展,在各个专业领域中都有着广泛的应用。然而。贝叶斯回归结合了回归和贝叶斯思想,其计算方法和技术以及模型结果的解释都较为复杂,准确应用贝叶斯回归,打通学科专业与贝叶斯回归间的壁垒。

第一章 贝叶斯模型的步骤

1.贝叶斯定理

2.先验与后验分布

3.假设检验

4.模型选择

5.贝叶斯计算方法简介

第二章 积分嵌套拉普斯近似

1.隐高斯模型

2.高斯-马尔科夫随机场

3.拉普拉斯近似与INLA

第三章 INLA下的贝叶斯回归

1.线性回归的贝叶斯推断

2.预测模型

3.贝叶斯下的模型选择

4.稳定回归

5.方差分析

6.Ridge回归

7.计数数据与泊松回归

8.偏斜数据的伽马回归

9.零膨胀数据建模

10.负二项回归初步

第四章 多层贝叶斯回归

1.随机效应多层模型

2.嵌套效应多层模型

3.面板(测量)数据的多层模型

4.计数数据的多层模型

第五章 生存分析

1.分段线性风险模型

2.分层比例风险模型

3.加速失效模型

4.脆弱模型

5.面板与时间-事件数据的联合建模

第六章 随机游走非参数模型

1.光滑曲线模型

2.非高斯数据模型

3.罚曲线回归

4.广义非参数回归

第七章 广义可加模型

1.可加曲线回归

2.广义可加混合效应模型

3.计数数据的广义可加模型

第八章 极端数据的贝叶斯分析与其它

1.极值统计学简介

2.极值统计学的贝叶斯估计

3.基于INLA的密度估计


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值