状态转移矩阵求解

博客主要围绕状态转移矩阵的求解展开,通过具体例子介绍求解步骤。先写出齐次方程,接着求方程在特定条件下的解,再取线性无关的初始状态求出基本矩阵,然后求基本矩阵的逆矩阵,最终得出状态转移矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

状态转移矩阵\phi (t,t_{0})的求解


例:\dot{x}(t)=\begin{bmatrix} -sint &0 \\ 0& -cost \end{bmatrix}x(t)

求状态转移矩阵。


STEP1:写出齐次方程。

\dot{x_{1}}(t)=-sint\cdot x_{1}(t)  ①

\dot{x_{2}}(t)=-cost\cdot x_{2}(t)  ②

STEP2:求方程在t_{0}=0条件下的解:x_{i}(t)=\int_{t_{0}}^{t}\dot{x_{i}}(\tau ,t_{0})d\tau +x_{i}(0)

x_{1}(t)=\int_{0}^{t}(-sin\tau )\cdot x_{1}(0)d\tau +x_{1}(0)=cost\cdot x_{1}(0)

x_{2}(t)=\int_{0}^{t}(-cos\tau )\cdot x_{2}(0)d\tau +x_{2}(0)=(1-sint)\cdot x_{2}(0)

STEP3:取线性无关的初始状态,求出基本矩阵。

x(0)=\begin{bmatrix} 1\\0 \end{bmatrix}时:x(t)=\begin{bmatrix} cost\\ 0 \end{bmatrix}

x(0)=\begin{bmatrix} 0\\1 \end{bmatrix}时:x(t)=\begin{bmatrix} 0\\ 1-sint \end{bmatrix}

由于两个初始状态线性无关,所以基本矩阵为:

X(t)=\begin{bmatrix} cost &0 \\ 0& 1-sint \end{bmatrix}

STEP4:求基本矩阵的逆矩阵X^{-1}(t)

X^{-1}(t)=\begin{bmatrix} \frac{1}{cost} & 0\\ 0& \frac{1}{1-sint} \end{bmatrix}

STEP5:状态转移矩阵为:\phi (t,t_{0})=X(t)\cdot X^{-1}(t_{0})

\phi (t,t_{0})=\begin{bmatrix} \frac{cost}{cost_{0}}& 0\\ 0& \frac{1-sint_{0}}{1-sint} \end{bmatrix}

 

### 使用MATLAB计算状态转移矩阵 在线性系统理论中,状态转移矩阵 \( \Phi(t) \) 是描述系统动态行为的重要工具之一。对于连续时间线性时不变系统(LTI),其状态方程可以写成: \[ \dot{x}(t) = Ax(t) \] 其中 \( A \) 为系统的状态矩阵状态转移矩阵可以通过以下方法求解。 #### 方法一:利用矩阵指数函数 `expm` 状态转移矩阵定义为矩阵 \( A \) 的指数函数,即: \[ \Phi(t) = e^{At} \] 在 MATLAB 中,可以直接使用内置函数 `expm` 来计算矩阵的指数[^1]。以下是具体实现代码: ```matlab % 定义状态矩阵 A A = [-1 2; -3 4]; % 计算 t 时间的状态转移矩阵 Phi(t) t = 5; % 假设时间为 5 秒 Phi_t = expm(A * t); disp('状态转移矩阵 Phi(t):'); disp(Phi_t); ``` 此方法适用于任何给定的时间 \( t \),并能够快速得到精确的结果。 --- #### 方法二:通过拉普拉斯反变换求解 另一种方式是基于拉普拉斯变换来解析求解状态转移矩阵。假设初始条件为零,则有: \[ \Phi(s) = (sI - A)^{-1} \] 随后通过对 \( \Phi(s) \) 进行拉普拉斯反变换即可获得 \( \Phi(t) \)[^4]。以下是 MATLAB 实现过程: ```matlab syms s t; A = sym([-1 2; -3 4]); % 将 A 转换为符号变量以便于后续运算 % 构造 Laplace 域中的状态转移矩阵 Phi_s = inv(s*eye(size(A)) - A); % 对 Phi_s 进行拉普拉斯反变换 Phi_t = ilaplace(Phi_s, s, t); disp('状态转移矩阵 Phi(t):'); pretty(Phi_t); % 显示更美观的形式 ``` 这种方法更适合用于理论推导或者需要显式表达式的场景。 --- #### 示例验证 为了验证两种方法的一致性,我们可以对比它们的结果。例如取相同的矩阵 \( A \): ```matlab clc; clear; % 定义状态矩阵 A 和时间 t A = [-1 2; -3 4]; t = 5; % 方法一:直接使用 expm 函数 Phi_expmt = expm(A*t); % 方法二:通过拉普拉斯反变换 syms s t; Asym = sym(A); Phi_Laplace = inv(s*eye(size(Asym))-Asym); Phi_ilaplace = ilaplace(Phi_Laplace,s,t); Phi_laplace_num = double(subs(Phi_ilaplace,'t',t)); % 输出比较结果 fprintf('Method 1 using expm:\n'); disp(Phi_expmt); fprintf('\nMethod 2 via inverse Laplace transform:\n'); disp(Phi_laplace_num); ``` 运行以上程序会发现两者得出相同的结果,从而证明了算法的有效性和一致性[^4]。 --- ### 注意事项 - 如果系统维度较高,推荐优先选用数值方法 (`expm`) ,因为解析法可能面临复杂度增加以及难以处理的问题。 - 当涉及离散化或其他特殊需时,需额外考虑采样周期等因素的影响[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值