Python——获取DataFrame的表头列表

# 获取表头列表
header_list = df_data.columns.tolist()
### Python Pandas 实现带有多级表头的表格合并 为了创建具有多级表头的数据帧并执行合并操作,可以按照如下方式构建和处理数据: #### 导入必要的库 ```python import numpy as np import pandas as pd ``` #### 构建示例 DataFrame 并设置多级索引 通过 `pd.MultiIndex.from_tuples` 方法来定义多级索引。这允许每一列表有一个以上的层次结构。 ```python arrays = [['A', 'A', 'B', 'B'], ['one', 'two', 'one', 'two']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df1 = pd.DataFrame(np.random.randn(3, 4), index=['Ohio', 'Texas', 'Colorado'], columns=index) print(df1) ``` 此代码片段会生成一个带有两层列标签的数据框[^1]。 #### 创建第二个用于合并的 DataFrame 同样地,为另一个要合并的数据集设定相同的多级索引模式。 ```python df2 = pd.DataFrame(np.random.randn(3, 4), index=['Utah', 'New York', 'Vermont'], columns=index) print(df2) ``` #### 使用 concat 函数进行水平方向上的连接 当希望沿横向(即按列)拼接这些数据框时,可以通过指定 `axis=1` 参数来进行水平连接,并保留原有的多级表头结构。 ```python result_df = pd.concat([df1, df2], axis=1, join="outer") print(result_df) ``` 上述命令实现了两个不同地区记录之间的横向组合,同时维持了各自原始的双层列名格式[^3]。 对于那些可能存在的完全由 NaN 组成的多余列,则可通过调用 `.dropna()` 来清理它们[^4]。 ```python cleaned_result_df = result_df.dropna(axis='columns', how='all') print(cleaned_result_df) ``` 这样就完成了一个完整的流程——从建立到最终优化后的多级表头数据框合并过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

William.csj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值