动态规划——石子合并

P1880 [NOI1995] 石子合并(转自洛谷)

题目描述

在一个圆形操场的四周摆放 N 堆石子,现要将石子有次序地合并成一堆,规定每次只能选相邻的 2 堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出一个算法,计算出将 N 堆石子合并成 1 堆的最小得分和最大得分。

输入格式

数据的第 1 行是正整数 NN,表示有 N 堆石子。

第 2 行有 N 个整数,第 i 个整数 ai​ 表示第 i 堆石子的个数。

输出格式

输出共 2 行,第 1 行为最小得分,第 2 行为最大得分。

输入输出样例

输入 #1

4
4 5 9 4

输出 #1

43
54

说明/提示

1≤N≤100,0≤ai​≤20。


首先得先读懂题目意思:只能选相邻的两堆合并成一堆,并将当前合并成一堆的石子数记为本次合并的得分,然后不断合并,最后把所有得分相加获得总得分。举个例子:4、5、9、4,第一次合并,4+5=9;9、9、4,第二次合并,9+9=18;18、4,第三次合并,18+4=22,所以这种合并法的得分是9+18+22=49。如果只是合并算出得分,那么总得分是确定值,即所有石子数总和。

题目思路:

相邻的两堆合并,是不是可以联想到我们学过的矩阵链相乘,没学过的同学但感兴趣或学过却已经忘记了的话都可以去看一下,多学点东西,稳赚不亏!链接:(84条消息) 动态规划——矩阵链相乘_Wu_L7的博客-CSDN博客_动态规划 矩阵链相乘

思路极其相似,但又有一点不同。不同点是该题目是一个圆形操场,即第一个和最后一个也是可以合并的,这是个环,而矩阵链相乘是个线性的,所以我们要把它处理成线性的去解决。

举个例子:4、5、9、4构成环,第一个4不能和最后一个4先合并,我们可以把其转化成4、4、5、9,那这样子第一个4又不能和最后一个9先合并,所以我们又可以转化成9、4、4、5……如此往返,何时到尽头。

所以我们可以把它进行头尾拼接,把4、5、9、4问题转化成4、5、9、4、4、5、9,这样所有情况都考虑进去了,接下来就跟矩阵链相乘方法一样,获取动态规划求解公式。

最小值求解公式:f[ i ][ j ]=min{ f[ i ][ j ], f[ i ][ k ]+f[ k+1 ][ j ]+ s[ j ] - s[ i-1 ] }(s是前缀和数组),即找到一个中转站k,使得f[ i ][ k ]的花费和f[ k+1 ][ j ]的花费,再加上石头堆 i 到 j 的和(即这两堆石头总和)最少(利用前缀和来实现,可减少大量计算)。

同理,最大值求解公式:g[ i ][ j ]=max{ g[ i ][ j ], g[ i ][ k ]+g[ k+1 ][ j ]+ s[ j ] - s[ i-1 ] }。

以f[ i ][ j ]为例,二维数组中的求解过程:

 斜线一列一列的求解,其中第一列f[ i ][ j ](i==j)等于0,因为没有合并;例如f[ 2 ][ 4 ]=min{ f[ 2 ][ 2 ]+f[ 3 ][ 4 ]+s[ 4 ]-s[ 1 ], f[ 2 ][ 3 ]+f[ 4 ][ 4 ]+s[ 4 ]-s[ 1 ] },因为 f[ 2 ][ 2 ]、f[ 3 ][ 4 ]、 f[ 2 ][ 3 ]和f[ 4 ][ 4 ]都是前面已经求解了的,所以直接用就可以了,矩形框起来的就是对应的一种情况,例如第二个矩形求解的序列是5、9、4、4。而我们需要的结果就是第n列,即红色那条直线所在的数据,看看它们中哪个最小,就是我们的最小得分。最大值同理。

AC代码:

#include<iostream>
#include<algorithm>
#include<string.h>//memset的头文件
#define inf 1000001
using namespace std;
int a[201]={0};//记录石子堆中石子数 
int s[201]={0};//前缀和 
int f[201][201];//最小值动态规划表
int g[201][201];//最大值动态规划表 
int main() 
{
	int n=0;
	scanf("%d", &n);
	int temp=0;
	for(int i=1; i<=n; i++)
	{
		scanf("%d", &temp);
		a[i]=a[i+n]=temp;//两条相连,相当于循环 
	}
	for(int i=1; i<=2*n; i++)
	{
		s[i]=s[i-1]+a[i];//前缀和
	} 
	memset(f, inf, sizeof(f));//初始化数组f,需要求最小值,要赋大值inf
	memset(g, 0, sizeof(g));//初始化数组g,需要求最大值,要赋小值0
	for(int d=1; d<=n; d++)
	{
		for(int i=1; i<=2*n-d; i++)
		{
			int j=i+d-1;
			if(d==1)f[i][i]=0;//第一列要为0,因为没有合并
			else
			{
			    for(int k=i; k<=j-1; k++)
    			{
    				f[i][j]=min(f[i][j], f[i][k]+f[k+1][j]+s[j]-s[i-1]);
    				g[i][j]=max(g[i][j], g[i][k]+g[k+1][j]+s[j]-s[i-1]);
    			}
			}
		}
	} 
	int min_m=inf, max_m=0;
	for(int i=1; i<=n; i++)//各种情况中选最优,即优中选优
	{
		min_m=min(min_m, f[i][i+n-1]);
		max_m=max(max_m, g[i][i+n-1]);
	}
	cout<<min_m<<endl;
	cout<<max_m;
	return 0;
}

看完还不理解的同学可以先去看一下矩阵链相乘那篇文章,链接已附上,那篇的写得清晰易懂一点,思路差不多。希望能帮助到大家!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值