P1880 [NOI1995] 石子合并(转自洛谷)
题目描述
在一个圆形操场的四周摆放 N 堆石子,现要将石子有次序地合并成一堆,规定每次只能选相邻的 2 堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出一个算法,计算出将 N 堆石子合并成 1 堆的最小得分和最大得分。
输入格式
数据的第 1 行是正整数 NN,表示有 N 堆石子。
第 2 行有 N 个整数,第 i 个整数 ai 表示第 i 堆石子的个数。
输出格式
输出共 2 行,第 1 行为最小得分,第 2 行为最大得分。
输入输出样例
输入 #1
4 4 5 9 4
输出 #1
43 54
说明/提示
1≤N≤100,0≤ai≤20。
首先得先读懂题目意思:只能选相邻的两堆合并成一堆,并将当前合并成一堆的石子数记为本次合并的得分,然后不断合并,最后把所有得分相加获得总得分。举个例子:4、5、9、4,第一次合并,4+5=9;9、9、4,第二次合并,9+9=18;18、4,第三次合并,18+4=22,所以这种合并法的得分是9+18+22=49。如果只是合并算出得分,那么总得分是确定值,即所有石子数总和。
题目思路:
相邻的两堆合并,是不是可以联想到我们学过的矩阵链相乘,没学过的同学但感兴趣或学过却已经忘记了的话都可以去看一下,多学点东西,稳赚不亏!链接:(84条消息) 动态规划——矩阵链相乘_Wu_L7的博客-CSDN博客_动态规划 矩阵链相乘
思路极其相似,但又有一点不同。不同点是该题目是一个圆形操场,即第一个和最后一个也是可以合并的,这是个环,而矩阵链相乘是个线性的,所以我们要把它处理成线性的去解决。
举个例子:4、5、9、4构成环,第一个4不能和最后一个4先合并,我们可以把其转化成4、4、5、9,那这样子第一个4又不能和最后一个9先合并,所以我们又可以转化成9、4、4、5……如此往返,何时到尽头。
所以我们可以把它进行头尾拼接,把4、5、9、4问题转化成4、5、9、4、4、5、9,这样所有情况都考虑进去了,接下来就跟矩阵链相乘方法一样,获取动态规划求解公式。
最小值求解公式:f[ i ][ j ]=min{ f[ i ][ j ], f[ i ][ k ]+f[ k+1 ][ j ]+ s[ j ] - s[ i-1 ] }(s是前缀和数组),即找到一个中转站k,使得f[ i ][ k ]的花费和f[ k+1 ][ j ]的花费,再加上石头堆 i 到 j 的和(即这两堆石头总和)最少(利用前缀和来实现,可减少大量计算)。
同理,最大值求解公式:g[ i ][ j ]=max{ g[ i ][ j ], g[ i ][ k ]+g[ k+1 ][ j ]+ s[ j ] - s[ i-1 ] }。
以f[ i ][ j ]为例,二维数组中的求解过程:
斜线一列一列的求解,其中第一列f[ i ][ j ](i==j)等于0,因为没有合并;例如f[ 2 ][ 4 ]=min{ f[ 2 ][ 2 ]+f[ 3 ][ 4 ]+s[ 4 ]-s[ 1 ], f[ 2 ][ 3 ]+f[ 4 ][ 4 ]+s[ 4 ]-s[ 1 ] },因为 f[ 2 ][ 2 ]、f[ 3 ][ 4 ]、 f[ 2 ][ 3 ]和f[ 4 ][ 4 ]都是前面已经求解了的,所以直接用就可以了,矩形框起来的就是对应的一种情况,例如第二个矩形求解的序列是5、9、4、4。而我们需要的结果就是第n列,即红色那条直线所在的数据,看看它们中哪个最小,就是我们的最小得分。最大值同理。
AC代码:
#include<iostream>
#include<algorithm>
#include<string.h>//memset的头文件
#define inf 1000001
using namespace std;
int a[201]={0};//记录石子堆中石子数
int s[201]={0};//前缀和
int f[201][201];//最小值动态规划表
int g[201][201];//最大值动态规划表
int main()
{
int n=0;
scanf("%d", &n);
int temp=0;
for(int i=1; i<=n; i++)
{
scanf("%d", &temp);
a[i]=a[i+n]=temp;//两条相连,相当于循环
}
for(int i=1; i<=2*n; i++)
{
s[i]=s[i-1]+a[i];//前缀和
}
memset(f, inf, sizeof(f));//初始化数组f,需要求最小值,要赋大值inf
memset(g, 0, sizeof(g));//初始化数组g,需要求最大值,要赋小值0
for(int d=1; d<=n; d++)
{
for(int i=1; i<=2*n-d; i++)
{
int j=i+d-1;
if(d==1)f[i][i]=0;//第一列要为0,因为没有合并
else
{
for(int k=i; k<=j-1; k++)
{
f[i][j]=min(f[i][j], f[i][k]+f[k+1][j]+s[j]-s[i-1]);
g[i][j]=max(g[i][j], g[i][k]+g[k+1][j]+s[j]-s[i-1]);
}
}
}
}
int min_m=inf, max_m=0;
for(int i=1; i<=n; i++)//各种情况中选最优,即优中选优
{
min_m=min(min_m, f[i][i+n-1]);
max_m=max(max_m, g[i][i+n-1]);
}
cout<<min_m<<endl;
cout<<max_m;
return 0;
}
看完还不理解的同学可以先去看一下矩阵链相乘那篇文章,链接已附上,那篇的写得清晰易懂一点,思路差不多。希望能帮助到大家!