HDU - 1548

本文介绍了一道经典的广度优先搜索(BFS)算法题目,通过使用BFS算法解决了一个特殊电梯模型中从起点到终点的最少操作次数问题,并详细展示了实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A strange lift

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31944    Accepted Submission(s): 11441


 

Problem Description

There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist.
Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"?

 

 

Input

The input consists of several test cases.,Each test case contains two lines.
The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
A single 0 indicate the end of the input.

 

 

Output

For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".

 

 

Sample Input


 

5 1 5 3 3 1 2 5 0

 

 

Sample Output


 

3

 

 

【题意】

     给你一个数组,ki代表在第i层,电梯只能上或者下k楼,楼高为n,电梯只能到达1-n楼,电梯初始在A楼,求到达b楼的最小步数

 

【思路】

    明显是一道简单的bfs,一开始写的时候认为不需要vis数组标记,结果就错了! 错了!!!!以后要记着Bfs都需要标记数组来进行标记,对于这道题,你走到i楼,就一定会有上ki或者下ki楼是它的最佳方案,不存在走过i楼后,需要再次走到i楼的情况,所以需要用VIS数组去标记是否到达过i楼

 

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
int k[20009];
int pos[200009],sum[2000009];
int vis[310000],n;
void bfs(int a,int b){
	int head = 0,tail = 1;
	pos[1] = a;
	vis[a] = 1;
	while (head < tail){
		head++;
		if (pos[head] == b){
			printf("%d\n",sum[head]);
			return;
		}
		if (pos[head]+k[pos[head]]<=n && vis[pos[head]+k[pos[head]]] == 0){
			tail++;
			pos[tail] = pos[head]+k[pos[head]];
			sum[tail] = sum[head]+1;
			vis[pos[head]+k[pos[head]]] = 1;
		}
		if (pos[head]-k[pos[head]]>0 && vis[pos[head]-k[pos[head]]] == 0){
			tail++;
			pos[tail] = pos[head]-k[pos[head]];
			sum[tail] = sum[head]+1;
			vis[pos[head]-k[pos[head]]] = 1;
		}
	}
	printf("-1\n");
	return ;
}
int main ()
{
	int a,b;
	while (~scanf("%d",&n)){
		if (n == 0) break;
		scanf("%d%d",&a,&b);
		memset(pos,0,sizeof(pos));
		memset(k,0,sizeof(k));
		memset(sum,0,sizeof(sum));
		memset(vis,0,sizeof(vis));
		for (int i = 1; i <= n; i++)
			scanf("%d",&k[i]);
		bfs(a,b);
	}
}

 

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值