#1076. 「POJ3061」Subsequence题解
题目描述
A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, and a positive integer S (S < 100 000 000) are given. Write a program to find the minimal length of the subsequence of consecutive elements of the sequence, the sum of which is greater than or equal to S.
输入
The first line is the number of test cases. For each test case the program has to read the numbers N and S, separated by an interval, from the first line. The numbers of the sequence are given in the second line of the test case, separated by intervals. The input will finish with the end of file.
输出
For each the case the program has to print the result on separate line of the output file.if no answer, print 0. Sample Input
样例输入
2
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5
样例输出
2
3
题目大意
给定长度为n的数列整数以及整数S。求总和不小于S的连续子序列的最小长度。如果不存在这样的子序列,输出0;
思路
当看到求总和不小于S的连续子序列的最小长度的时候,很明显,我们需要使用双指针的思想,我们需要从1开始遍历整个数组,先遍历l到a[i]+…+a[l]>=s的时候,然后判断能否更短,直到ans最接近s的时候,而长度就是l-i+1;
CODE
#include <bits/stdc++.h>
using namespace std;
long long a[1000001],l,f,r,n,s,ans;
int main() {
cin>>r;
while(r--) {
l=ans=0;//多组数据,记得清空
cin>>n>>s;
memset(a,0,sizeof(a));
for(int i=1; i<=n; i++) {
scanf("%lld",&a[i]);
}
long long len=n+1;
for(int i=1; i<=n; i++) {//从第一个点开始遍历
while(l<=n&&ans<s) {//累加ans,直到最接近s
l++;
ans+=a[l];
}
if(ans>=s) {//为了求最小解
len=min(len,l-i+1);
ans-=a[i];
}
}
if(len>n) {//如果没有更新,说明无解
puts("0");
} else {
printf("%lld\n",len);
}
}
return 0;
}