上周四和老师说过GPU即将收回的问题,上周五GPU就被收回了,目前这个实验得等等了。
之前的几个实验也向和老师汇报的一样基本搞完了,最近正在整理。
和GPU的老师咨询过,应该马上就全面推出了,最近会密切关注,一等到推出就立刻进行实验,而且老师说到时候会有12个节点好像,那么70B的大模型就可以跑了!甚至能跑一些更大的模型!
除此之外主要读了一些结合LLM技术的静态检测技术论文,感觉主要还是把重心放在了prompt的改进上。
第九周周报(润色与扩写版)
一、实验进展与设备情况
在本周中,我遭遇了实验设备方面的突发变故。上周四我已向导师提及GPU资源即将被收回的问题,而遗憾的是,这一情况在上周五迅速得到了确认,GPU资源已被正式回收。这一变动直接影响了我的当前实验进程,迫使我不得不暂时搁置该实验。
尽管如此,我在此之前的几项实验已按照既定计划基本完成,并已向导师进行了详细的汇报。目前,我正致力于对这些实验数据进行整理与分析,以期从中提炼出有价值的研究成果。
针对GPU资源短缺的问题,我已积极与负责管理GPU资源的老师进行了沟通。据老师透露,新的GPU资源即将全面推出,且数量较以往有所增加。我计划密切关注这一动态,一旦新的GPU资源上线,我将立即着手进行实验,以弥补因设备短缺而延误的时间。据老师介绍,届时将提供12个节点,这将为我运行70B甚至更大规模的模型提供强有力的支持。
二、文献阅读与技术研究
在本周的文献阅读方面,我主要关注了结合大型语言模型(LLM)技术的静态检测技术。通过阅读相关论文,我发现当前的研究热点主要集中在prompt的改进上。Prompt作为LLM技术中的关键组成部分,其设计对于模型的性能表现具有至关重要的影响。通过深入分析这些论文,我对prompt改进的重要性有了更深刻的认识,并计划在未来的研究中进一步探索这一领域。同时,我也将密切关注LLM技术在静态检测技术中的最新进展,以期为我的研究工作提供更多的启示和借鉴。