刷题--程序员面试金典--面试题 01.05. 一次编辑(最小编辑距离)(重点)(go)

本文介绍了LeetCode面试题01.05.一次编辑问题,通过动态规划解决最小编辑距离,讨论了边界条件和状态转移方程,并提供了判断结果的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试题 01.05. 一次编辑

字符串有三种编辑操作:插入一个字符、删除一个字符或者替换一个字符。 给定两个字符串,编写一个函数判定它们是否只需要一次(或者零次)编辑。

 

示例 1:

输入: 
first = "pale"
second = "ple"
输出: True
 

示例 2:

输入: 
first = "pales"
second = "pal"
输出: False

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/one-away-lcci
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 


 思路:

动态规划,可以由最小编辑距离转换到本题的思路。

dp[i][j] 表示 从 first[0:i] 到 second[0:j] 的最小编辑距离。

不管进行什么变换,只有进行变换就+1,且这一次变换总是选择上一次可选择变换中,变换次数最少的。

一、边界条件:

dp[0][0] = 0

dp[i][0] = i

dp[0][j] = j

二、转换过程:

当first[i] == second[j] 时,则说明这一步是不用进行任何编辑的,即dp[i][j] = dp[i-1][j-1].

当first[i] != second[j] 时,则说明这一步需要进行编辑,那么就需要进行选择三种中的一个:

有哪几种情况可以到达dp[i][j]?   分别是 : dp[i-1][j] , dp[i][j-1] , dp[i-1][j-1]

又要求的是最小的编辑距离,所以是:

dp[i][j] = 1 + min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])

三、判断结果

最后对结果进行判断即可。

 

var dp [][]int
func oneEditAway(first string, second string) bool {
    dp = make([][]int, len(first)+1)
    for i:=0; i <= len(first); i++ {
	    dp[i] = make([]int, len(second)+1)
    }

    for i:=1;i<=len(first);i++ {
        dp[i][0] = i
    }
    for j:=1;j<=len(second);j++ {
        dp[0][j] = j
    }

    for i:=1;i<=len(first);i++ {
        for j:=1;j<=len(second);j++ {
            if first[i-1] == second[j-1] {
                dp[i][j] = dp[i-1][j-1]
            } else {
                dp[i][j] = 1 + min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])
            }
        }
    }

    if dp[len(first)][len(second)] > 1 {
        return false
    }
    return true
}

func min(a, b, c int) int {
	min := a
	if b < min {
		min = b
	}
	if c < min {
		min = c
	}
	return min
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值