时间序列预测是一种重要的机器学习任务,它涉及根据过去的观测值来预测未来的值。循环神经网络(RNN)是一种适用于处理时间序列数据的强大工具,它具有记忆能力和处理序列数据的能力。在本文中,我们将使用RNN来实现时间序列预测,并提供相应的源代码示例。
首先,让我们导入所需的库:
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import