Python实现Pat 1085. Perfect Sequence (25)

本文介绍了一个算法问题:如何从一组正整数中找到尽可能多的数形成“完美子序列”。这里,完美子序列定义为最大值与最小值之比不超过给定参数p的序列。文章提供了具体的输入输出规范及一个示例性的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

Given a sequence of positive integers and another positive integer p. The sequence is said to be a “perfect sequence” if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.

Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.

Input Specification:

Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.

Output Specification:

For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.

Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8

解答

排序题。

N,p = [int(x) for x in input().split(' ')]
nums=[int(x) for x in input().split(' ')]
nums.sort()
low=0
up=1
maximum =1
for low in range(N-1):
    while(up<N):
        if nums[up]<=nums[low]*p:
            up+=1
        elif up-low>maximum:
            maximum=up-low
        else:
            break
print (maximum)

又有错误,懒得调试了。

这里写图片描述

The `keras.utils.Sequence` class is an abstract base class that allows you to create a custom data generator for training neural networks with Keras. It provides a convenient way to load and preprocess large amounts of data directly from disk, without having to keep the entire dataset in memory at once. To use `Sequence`, you need to subclass it and implement two methods: - `__len__(self)`: returns the total number of batches in your dataset - `__getitem__(self, index)`: returns the `index`-th batch of data You can also optionally implement the `on_epoch_end(self)` method, which is called at the end of each epoch to perform any required actions (e.g., shuffling the data). Here's an example of how to use `Sequence` to create a custom data generator: ```python from keras.utils import Sequence class MyDataGenerator(Sequence): def __init__(self, data_dir, batch_size): self.data_dir = data_dir self.batch_size = batch_size self.data_files = os.listdir(data_dir) def __len__(self): return len(self.data_files) // self.batch_size def __getitem__(self, index): batch_files = self.data_files[index*self.batch_size:(index+1)*self.batch_size] batch_data = [] for file_name in batch_files: data = load_data(os.path.join(self.data_dir, file_name)) preprocessed_data = preprocess_data(data) batch_data.append(preprocessed_data) return np.array(batch_data) def on_epoch_end(self): np.random.shuffle(self.data_files) ``` In this example, `MyDataGenerator` takes a directory containing data files and a batch size as input. `__len__` returns the number of batches (i.e., the number of files divided by the batch size), and `__getitem__` loads and preprocesses each batch of data. `on_epoch_end` shuffles the list of data files at the end of each epoch. Once you've defined your custom data generator, you can use it to train your Keras model like this: ```python model.fit_generator(generator=MyDataGenerator(data_dir='data/', batch_size=32), steps_per_epoch=1000, epochs=10) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值