基于halcon的模板匹配总结

本文介绍了三种模板匹配方法:基于灰度、相关性和形状的匹配。基于灰度的方法适合光照稳定的场景;基于相关性的方法适用于光照变化及部分遮挡的情况;基于形状的方法则能较好应对光照变化、局部边缘缺失等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1)基于灰度的模板匹配

原理:计算模板图像和检测图像之间像素灰度差值的绝对值总和(SAD方法)或者平方差总和(SSD方法)

适用对象:目标图像光照比较稳定

2)基于相关性的模板匹配

原理:依旧 是基于灰度值得匹配,但是是使用一种归一化的互相关匹配(NCC)来衡量模板和检测图像之间的关系,受光照方面的影响比较小。是将模板图像中所有像素按照顺序组成一个行向量的模板的特征向量,然后再检测图像上寻找与模板最匹配的区域,通过计算 两个向量的夹角,来衡量匹配的概率;

优点:适用于光照变化,对小范围的遮挡和损失也能适用,同时还适用于聚焦不清楚的图像和形状变形;

缺点:检测图像位移、旋转或者缩放比较大会导致匹配失败;

3)基于形状的模板匹配

原理:是基于边缘方向梯度的匹配。该方法是以物体边缘的梯度相关性为 匹配标准,提取兴趣区区域内的边缘特征,根据模板的大小和清晰度要求生成多层级的图像金字塔模型,接着再图像金字塔层自上而下逐层搜索模板图像,直至搜索到底层或者确定的匹配结果为止;

优点:对很多干扰因素不敏感,如光照和图像灰度发生变化,甚至支持局部边缘缺失杂乱场景,噪声,失焦,轻微变形;

缺点:不适用于旋转和缩放比较大的情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值