Pytorch_gpu 版本安装

准备工作一

1、查看自己的电脑是否支持GPU

怎样知道自己的电脑是否支持GPU?https://blog.csdn.net/YPP0229/article/details/106364757

2. 测试本机电脑是否支持CUDA的安装

点击链接,查询显卡是否在列表https://developer.nvidia.com/cuda-gpus
在这里插入图片描述
3.如果支持CUDA,支持哪一版本的CUDA? 我的是支持CUDA10.2

查看方法一:

在这里插入图片描述

查看方法二:

查看适合自己电脑的CUDA版本:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#abstract

在这里插入图片描述
在这里插入图片描述

准备工作二

安装VS2017

  1. 下载:https://visualstudio.microsoft.com/zh-hans/downloads/
  2. 安装参考教程:VS2017全部下载后再安装的路径在哪里?安装过程是什么?https://blog.csdn.net/libaineu2004/article/details/89554461

安装CUDA(全名,CUDA Toolkit)

  1. 下载CUDA Toolkithttps://developer.nvidia.com/cuda-toolkit-archive

  2. 安装CUDA Toolkit:windows10下安装GPU版pytorch简明教程:https://zhuanlan.zhihu.com/p/54350088

  3. 测试是否安装成功:运行cmd,输入nvcc --version,即可查看版本号;

安装cudann

  1. 下载cudann:https://developer.nvidia.com/cudnn
  2. 将cudann解压到你想放的位置
最后,可以安装pytorch了
参考
  1. windows10下安装GPU版pytorch简明教程:https://zhuanlan.zhihu.com/p/54350088
  2. win10下pytorch-gpu安装以及CUDA详细安装过程https://blog.csdn.net/mind_programmonkey/article/details/99688839
测试GPU版本的Pytorch是否安装成功
import torch
print(torch.cuda.is_available())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值