AdaBoost与GBDT进行比较

本文探讨了AdaBoost和GBDT两种机器学习算法的差异。AdaBoost是一种加法模型,采用指数损失函数,通过前向分步算法优化参数。而GBDT则利用负梯度来改进模型,能适应更广泛的损失函数,相比Adaboost,它能更灵活地处理模型不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AdaBoost: 加法模型,指数损失函数,使用前向分步算法求解模型参数
目标是使前向分步算法得到的αm\alpha_mαmGm(x)G_m(x)G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值