AI,大数据,机器学习三者概念的区分

本文探讨了AI、大数据和机器学习的关系及其在不同领域的应用。AI并非新生事物,而是逐渐融入各个行业的关键技术。大数据和机器学习的发展使AI能力提升,能够自我学习和发现新知识。翻译、无人驾驶、医疗健康、风控AI等领域已展现出AI的应用潜力,而真正落地的关键在于找到合适的应用场景。

AI,大数据,机器学习这些概念特别火,一个通用的认识是,AI是行业未来,是下一个风口,是千亿美元巨头的诞生点。但我不想说,写一篇文章来证明,为什么AI那么重要或者那么有价值,因为这属于正确但完全没用的废话。就好比你说IT行业是巨大的市场方向一样,正确然而并没有卵用。

AI并不是最新的东西,只是最新技术发展的确实有点快,很多出色的互联网产品或其他高科技产品多少都要有AI的成分,从游戏里的Boss,到翻译系统,搜索引擎,推荐系统,到决策支持系统,自动交易系统,工业机器人,无人驾驶,以及各种社交机器人陪聊系统,美图工具,AI其实无处不在。就算从传统领域来说,不说无人驾驶,现在汽车里的各种安全辅助系统,其实也可以认为是AI系统。

锤子科技的发布会,讯飞语音输入法突然走红,这也是AI 的一个典型场景,你们知道么,我在十五年前就知道并了解过这个东西了,你会说吹牛吧,十五年前pc互联网才刚起步,移动互联网还没人听说过呢。 那时候,我还在做呼叫中心方案,呼叫中心方案里有个模块叫做IVR,中文是交互式语音应答,当时国内技术最强,处于近乎垄断地位的,就是科大讯飞,其实就是语音识别和自动处理,和现在的讯飞输入法,从技术原理而言,并无二致,但那时候,AI 这个概念还没火。当然技术也没现在成熟,实际上绝大部分呼叫中心,并没有把交互式语音应答当作重要的模块,更多是让用户按键输入和人工服务。

AI最初,是人类制定明确的规则和逻辑,并提供给机器可以借用的数据资源,让机器去执行,也就是一样样教,机器一样样学,机器发挥计算力和反应速度的优势。但后来大数据,机器学习这些东西开始起来后,很多东西就发生了改变,人类只给一个基本的学习方法和逻辑,然后就是大数据集,让AI通过这些大数据,和基本的学习方法,自己去学习和发现知识点,这样AI的能力就得到了飞跃,甚至可以发现很多人类尚未发现的知识点,也就是出现了超越人类判断力的可能。

举个例子,比如我有个系统,需要根据人的基因测序结果,来分析和判断这个人的健康风险和遗传疾病可能,在以前呢,是需要对每一个基因的定义,科学家做严格的对比测试,把结论整理清楚,然后告诉这个系统,这个系统才知道,你这个基因到底咋回事,出了什么问题。但后来大数据出来了,就有了新的玩法,根据大量真实用户的基因测序结果和真实的疾病

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值