UVa 10294 Arif in Dhaka (First Love Part 2)

本文详细解析UVa10294ArifinDhaka问题,介绍如何计算由无限多种颜色珠子组成的项链和手镯的不同组合方式。通过置换、循环和不动点的概念,利用Burnside引理和Polya定理解决手镯翻转与项链旋转带来的计数难题。

layout: post
title: “UVa 10294 Arif in Dhaka (First Love Part 2)”

Description

项链,和手镯。由n个珠子组成,有t种颜色,每种颜色的珠子无限多,问有多少种项链和手镯。
手镯可以翻转,项链不可以。(我也不知道为什么是这样)。

Algorithm

先对珠子编号,0…n-1。有两种置换,旋转和翻转。
旋转有n种旋转方式,从不转到转n-1个,设i = 0…n-1,表示转的个数。循环节是gcd(i, n)个。不动点总数为t^gcd(i, n)之和,设为a.
当然,这么说谁也看不懂,下面具体讲解知识点。
将n个元素全排列然后一一映射。一般写成两行的形式

1   2  3  4  5 ..  n
a1 a2 a3 a4 a5 .. an

表示从1映射到a1, 2映射到a2…
置换可以分解为循环的形式
比如说

1 2 3 4 5
3 5 1 4 2

这个表示1->3->1 所以 1,3是个循环,2->5->2,2,5是个循环,4,4单独构成循环
所以上述置换可以表示为(1 3)(2 5)(4)
循环节:循环的个数称为循环节。上述置换的循环节是3。
不动点:一个着色方案,经过置换后不变,就叫做不动点。不动点不是点,是着色方案。
Burnside引理: 等价类数目 = 不动点数目平均值
polya定理: 置换f的循环节为m(f), 涂k种颜色,等价类个数 = k^m(f)的平均数。
接下来考虑翻转:
n为奇数,对称轴n条,因为必定会穿过一个珠子。也就是n种置换,每种置换有(n-1)/2个长度为2的和1个长度为1的

1 2 3 4 5 以 3 为对称轴,则置换为
5 4 3 2 1。
当n为偶数的时候,要穿过珠子必须一次传过两个,有n/2条,同时不穿过珠子的也是n/2。
这样就可以算出翻转的情况了。
##Code

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N(51 + 9);
ll p[N];
int main()
{
    int n, t;
    while (cin >> n >> t) {
        p[0] = 1;
        for (int i(1); i <= n; i++) p[i] = p[i-1]*t;
        ll a(0);
        for (int i(0); i < n; i++) a += p[__gcd(i, n)];
        ll b(0);
        if (n % 2) b = n * p[(n+1) / 2];
        else b = n / 2 * (p[n/2] + p[n/2+1]);
        cout << a / n << ' ' << (a+b) / 2 / n << endl;
    }
}  

阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值