【200分】
题目描述: 众所周知红黑树是一种平衡树,它最突出的特性就是不能有两个相邻的红色节点。
那我们定义一个红黑图,也就是一张无向图中,每个节点可能有红黑两种颜色,但我们必须保证没有两个相邻的红色节点。
现在给出一张未染色的图,只能染红黑两色,问总共有多少种染色方案使得它成为一个红黑图。
输入描述: 第一行两个数字n m,表示图中有n个节点和m条边。
接下来共计m行,每行两个数字s t,表示一条连接节点s和节点t的边,节点编号为[0,n)。
输出描述: 一个数字表示总的染色方案数。
补充说明:
0 < n < 15
0 <= m <= n * 3
0 <= s, t < n
不保证图连通
保证没有重边和自环
示例
示例1
输入:
3 3
0 1
0 2
1 2
输出: 4
示例2
输入:
4 3
0 1
1 2
2 3
输出: 8
示例3
输入:
4 3
0 1
0 2
1 2
输出: 8
知识点:枚举