1.卷积
卷积维度:一般情况下,卷积核在几个维度上滑动,就是几位卷积
nn.conv2d()对多个二维信号进行二维卷积
nn.conv2d(
in_channels:输入通道数
out_channels:输出通道数 等价于卷积核的个数
kernel_size:卷积核尺寸
stride:步长
padding:填充个数
dilation,空洞卷积大小
groups,分组卷积设置
bias,偏置
padding_mode='zeros'
)
nn.ConvTranspose2d()转置卷积
nn.ConvTranspose2d