LRC (电感电阻电容)组成的二阶系统公式推导

首先从简化的 LC (电感电容)串联电路入手,分析阶跃信号下,电容两端电压的变化情况,对 LC (电感电容)电路进行公式推导,并进行了理论情况下的计算与仿真,因电池有内阻,导线和电感也都有电阻,所以实际情况下电阻不能忽略,因此 LC 实际测试结果与仿真结果有差异,从而引出了 LRC (电感电阻电容)电路的分析和推导,并进行了仿真验证。

LC (电感电容)电路中电容两端电压变化的函数推导

LC(电感电容)电路如下。
LC电路

已知条件

从图中可知:

电源电压
vs(t)={0,t≤0VI,t>0 v_s(t)= \begin{cases} 0,\quad t\leq 0 \\[2ex] V_I, \quad t>0 \end{cases} vs(t)=0,t0VI,t>0

电容两端初始电压
v(0)=0 v(0) = 0 v(0)=0

电感两端初始电流
i(0)=0 i(0) = 0 i(0)=0

待求的电容两端电压函数为 v(t)

前置知识

  • 电容伏安特性:i=Cdvdti = C\frac{dv}{dt}i=Cdtdv
  • 电感伏安特性:v=Ldidtv = L\frac{di}{dt}v=Ldtdi
  • 电感伏安特性的积分形式:
    1L∫−∞tvdt=i \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t v \mathrm{d} t \end{aligned} = i L1tvdt=i

公式推导

根据节点法,流入节点电流等于流出节点的电流,有

1L∫−∞t(VI−v(t))dt=Cdv(t)dt \frac{1}{L} \begin{aligned} \int\limits_{-\infty}^t (V_I - v(t)) \mathrm{d} t \end{aligned} = C\frac{d{v(t)}}{dt} L1t(VIv(t))dt=Cdtdv(t)

对方程两端进行对 t 求导

1L(VI−v(t))=Cd2v(t)dt2 \frac{1}{L}(V_I - v(t)) = C\frac{d^2{v(t)}}{dt^2} L1(VIv(t))=Cdt2d2v(t)

移项整理得

LCd2v(t)dt2+v(t)=VI LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI

这里 L、C、VIL、 C、 V_ILCVI 都是已知常数,所以解上边这个二阶微分方程,就可以得到电容两端电压随时间变化的函数。

我们的目的是解出 v(t)v(t)v(t)

这里使用求特解加齐次解的方法解这个微分方程:

总的通解为特解+齐次解

v(t)=vp(t)+vh(t)v(t) = v_p(t) + v_h(t)v(t)=vp(t)+vh(t)

vp(t)v_{p}(t)vp(t) ,特解

vh(t)v_{h}(t)vh(t) ,齐次解

分为下面三个步骤:

  1. 找出特解
  2. 找出对应的齐次方程的通解
  3. 根据初始条件计算通解中的常数参数
1.找特解

LCd2vp(t)dt2+vp(t)=VI LC\frac{d^2{v_p(t)}}{dt^2} + v_p(t) = V_I LCdt2d2vp(t)+vp(t)=VI

尝试 vp(t)=VIv_p(t) = V_Ivp(t)=VI, 带入后满足方程,即
vp(t)=VI v_p(t) = V_I vp(t)=VI

2.找齐次方程通解

首先,令方程右边为 0,

LCd2v(t)dt2+v(t)=VI LC\frac{d^2{v(t)}}{dt^2} + v(t) = V_I LCdt2d2v(t)+v(t)=VI

得到对应的齐次方程:

LCd2vH(t)dt2+vH(t)=0 LC\frac{d^2{v_H(t)}}{dt^2} + v_H(t) = 0 LCdt2d2vH(t)+vH(t)=0

vH(t)=Aestv_H(t) = Ae^{st}vH(t)=Aest,找到满足齐次方程的 A 和 s,即可得到齐次解,
vH(t)=Aestv_H(t) = Ae^{st}vH(t)=Aest带入上边的二阶微分方程:

LCAs2est+Aest=0 LCAs^2e^{st} + Ae^{st} = 0 LCAs2est+Aest=0

这里不需要 A = 0 的解,所以可以约掉 AestAe^{st}Aest,化简为:

LCs2+1=0 LCs^2 + 1 = 0 LCs2+1=0

得到特征方程

s2=−1LC s^2 = -\frac{1}{LC} s2=LC1

开根号

s=±j1LC s = \pm j\sqrt{\frac{1}{LC}} s=±jLC1

ω0=1LC\omega_0 = \sqrt{\frac{1}{LC}}ω0=LC1

上式可以简化成

s=±jω0 s = \pm j\omega_0 s=±jω0

根据二阶微分 LCd2v(t)dt2+v(t)=VILC\frac{d^2{v(t)}}{dt^2} + v(t) = V_ILCdt2d2v(t)+v(t)=VI ,可以看出 LC 的平方根的单位是时间,因此 ω0=1LC\omega_0 = \sqrt{\frac{1}{LC}}ω0=LC1 是频率(时间的倒数)

因此,可以得到齐次方程的通解:

vH=A1ejω0t+A2e−jω0t v_H = A_1e^{j\omega_0t} + A_2e^{-j\omega_0t} vH=A1ejω0t+A2ejω0t

其中

ω0=1LC \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

3.通过初始条件计算常数参数

现在得到了总的解

v=vP+vH v = v_P + v_H v=vP+vH

带入得

v=VI+A1ejω0t+A2e−jω0t v = V_I + A_1e^{j\omega_0t} + A_2e^{-j\omega_0t} v=VI+A1ejω0t+A2ejω0t

其中

ω0=1LC \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

根据已知的初始条件 vC(0)=0v_C(0) = 0vC(0)=0,即 v(0)=0v(0) = 0v(0)=0

带入可得

0=VI+A1+A2 0 = V_I + A_1 + A_2 0=VI+A1+A2

根据另一个已知条件 iL(0)=0i_L(0) = 0iL(0)=0,因为:
i=Cdvdt i = C\frac{dv}{dt} i=Cdtdv

所以,当 t = 0 时,有

0=CA1jω0ejω0t+CA2(−jω0)e−jω0t 0 = CA_1j\omega_0e^{j\omega_0t} + CA_2(-j\omega_0)e^{-j\omega_0t} 0=CA1jω0ejω0t+CA2(jω0)ejω0t

消掉公共项,可得

0=A1−A2 0 = A_1 - A_2 0=A1A2


A1=A2A_1 = A_2A1=A2

根据得到的方程组

{A1=A20=VI+A1+A2 \left\{ \begin{array}{c} A_1 = A_2 \\ 0 = V_I + A_1 + A_2 \end{array} \right. {A1=A20=VI+A1+A2

可以解得

A1=A2=−VI2 A_1 = A_2 = -\frac{V_I}{2} A1=A2=2VI

可以得到最终的 v(t) 的解为:

v(t)=VI−VI2(ejω0t+e−jω0t) v(t) = V_I - \frac{V_I}{2}(e^{j\omega_0t}+e^{-j\omega_0t}) v(t)=VI2VI(ejω0t+ejω0t)

根据欧拉公式 ejx=cosx+jsinxe^{jx} = cosx + jsinxejx=cosx+jsinx,上式还可整理成如下形式:

v(t)=VI−VIcos(ω0t) v(t) = V_I - V_Icos(\omega_0t) v(t)=VIVIcos(ω0t)

到此,推导结束,可以得到电容两端的电压以及电流(CdvdtC\frac{dv}{dt}Cdtdv)随时间的变化关系:

v(t)=VI−VIcos(ω0t)i(t)=CVIω0sin(ω0t) \left. \begin{array}{c} v(t) = V_I - V_Icos(\omega_0t) \\ i(t) = CV_I\omega_0sin(\omega_0t) \end{array} \right. v(t)=VIVIcos(ω0t)i(t)=CVIω0sin(ω0t)

其中

ω0=1LC \omega_0 = \sqrt{\frac{1}{LC}} ω0=LC1

结果验证

取以下参数进行验证:

  • 直流电压源电压 VI=1.3VV_I = 1.3VVI=1.3V
  • 电感 L=3.7mHL = 3.7mHL=3.7mH
  • 电容 C=10uFC = 10uFC=10uF
1. 数学函数曲线

将选取的参数值带入电容电压函数中,得到
v=1.3−1.3∗cos(13.7∗10−3∗10∗10−6∗t) \left. \begin{array}{c} v = 1.3 - 1.3*\\ cos(\sqrt{\frac{1}{3.7*10^{-3} * 10*10^{-6}}}*t) \end{array} \right. v=1.31.3cos(3.7103101061t)

绘制函数曲线如下

LC函数曲线

2. 仿真验证

根据选取的参数,在 LTspice 中进行仿真,与函数曲线结果一致,结果如下
LC仿真结果

3. 实验验证

搭建了实验电路进行实际测试,发现结果与理论计算及仿真结果不一致,实验过程如下

1.实验电路

下图为实验用到的元件及装置,使用了 1.3V (标称1.2v,实测1.3v) 的 7 号电池 作为直流源,标称值 10uF 的电容,以及标称值 3.7mH 的电感线圈。

LRC实验装置

2.实验结果

下图为示波器上升沿单次触发捕获的波形,可以看到波形与理论计算不一致。

LRC实测结果

3.问题分析

这里不一致是因为电路中各部分包含的电阻所导致,电池包含内阻,导线、电感线圈都具有一定的电阻值,所以实际电路中还有电阻的串联需要考虑进去,下面继续对 LRC (电感电阻电容串联)电路进行分析。

LRC 电路公式推导

构造电路模型

根据上面的分析,我们实际实验的电路等效模型如下图所示

LRC电路

列 LRC 二阶微分方程

利用节点法,在图中红色的节点 vA(t) 处,根据流入节点电流等于流出节点的电流,有:
1L∫−∞t(vI(t)−vA(t))dt=vA(t)−v(t)R \frac{1}{L}\int\limits_{-\infty}^t(v_I(t)-v_A(t)) \mathrm{d} t = \frac{v_A(t) - v(t)}{R} L1t(vI(t)vA(t))dt=RvA(t)v(t)

根据电阻电容间的节点可以写出如下:

vA(t)−v(t)R=Cdv(t)dt \frac{v_A(t) - v(t)}{R}=C\frac{dv(t) }{dt} RvA(t)v(t)=Cdtdv(t)

整理消元后得:

1L∫−∞t(vI(t)−Cdv(t)dtR−v(t))dt=Cdv(t)dt \begin{array}{c} \frac{1}{L}\int\limits_{-\infty}^t(v_I(t)-C\frac{dv(t) }{dt}R - v(t)) \mathrm{d} t\\ = C\frac{dv(t) }{dt} \end{array} L1t(vI(t)Cdtdv(t)Rv(t))dt=Cdtdv(t)

对两边对 t 进行微分:

LCd2v(t)dt2=vI(t)−Cdv(t)dtR−v(t) LC\frac{d^2v(t)}{dt^2} = v_I(t) - C\frac{dv(t)}{dt}R - v(t) LCdt2d2v(t)=vI(t)Cdtdv(t)Rv(t)

移项并整理得:

d2v(t)dt2+RLdv(t)dt+1LCv(t)=vI(t)LC \frac{d^2v(t)}{dt^2} + \frac{R}{L}\frac{dv(t)}{dt} + \frac{1}{LC}v(t) = \frac{v_I(t)}{LC} dt2d2v(t)+LRdtdv(t)+LC1v(t)=LCvI(t)

这就是我们要解的 LRC 电路的二阶微分方程。

解 LRC二阶微分方程

设电压源输入信号为阶跃信号:
vI(t)={0,t≤0VI,t>0 v_I(t)= \begin{cases} 0,\quad t\leq 0 \\[2ex] V_I, \quad t>0 \end{cases} vI(t)=0,t0VI,t>0

初始条件为电容初始电压等于 0v, 电感初始电流等于 0A:

v(0)=0,i(0)=0v(0) = 0,\quad i(0) = 0v(0)=0,i(0)=0

总的通解为特解+齐次解

v(t)=vp(t)+vh(t)v(t) = v_p(t) + v_h(t)v(t)=vp(t)+vh(t)

vp(t)v_{p}(t)vp(t) ,特解

vh(t)v_{h}(t)vh(t) ,齐次解

再次列出我们一直用的方法步骤:

  1. 找出特解 vp(t)
  2. 找出对应的齐次方程的通解 vh(t)
  3. 根据初始条件计算通解中的常数参数
1. 找特解 vp

d2vp(t)dt2+RLdvp(t)dt+1LCvp(t)=VILC \frac{d^2v_p(t)}{dt^2} + \frac{R}{L}\frac{dv_p(t)}{dt} + \frac{1}{LC}v_p(t) = \frac{V_I}{LC} dt2d2vp(t)+LRdtdvp(t)+LC1vp(t)=LCVI

尝试 vp(t)=VIv_p(t) = V_Ivp(t)=VI, 带入后等式成立,所以可以得到一个特解:
vp=VI v_p = V_I vp=VI

2. 找齐次解 vh

d2vh(t)dt2+RLdvh(t)dt+1LCvh(t)=0 \frac{d^2v_h(t)}{dt^2} + \frac{R}{L}\frac{dv_h(t)}{dt} + \frac{1}{LC}v_h(t) = 0 dt2d2vh(t)+LRdtdvh(t)+LC1vh(t)=0

尝试 vh(t)=Aestv_h(t) = Ae^{st}vh(t)=Aest 的形式,代入对应的齐次方程有:

As2est+RLAsest+1LCAest=0 As^2e^{st} + \frac{R}{L}Ase^{st} + \frac{1}{LC}Ae^{st} = 0 As2est+LRAsest+LC1Aest=0

舍掉 A = 0 的情况,并约掉相同项,化简得到特征方程

s2+RLs+1LC=0 s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 s2+LRs+LC1=0

引入新的符号简记方程,令

2α=RL 2\alpha = \frac{R}{L} 2α=LR

ω0=1LC \omega_0= \sqrt{\frac{1}{LC}} ω0=LC1

特征方程对应的表示为

s2+2αs+ω02=0 s^2 + 2\alpha s + \omega_0^2 = 0 s2+2αs+ω02=0

解得:

s1=−α+α2−ω02s2=−α−α2−ω02 \begin{array}{c} s_1= -\alpha + \sqrt{\alpha^2-\omega_0^2} \\ s_2= -\alpha - \sqrt{\alpha^2-\omega_0^2} \end{array} s1=α+α2ω02s2=αα2ω02

可以的到齐次解为:

vh(t)=A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t \begin{array}{c} v_h(t) = A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} vh(t)=A1e(α+α2ω02)t+A2e(αα2ω02)t

3. 根据初始条件计算未知常数

现在可以计算总的解为:

v(t)=VI+A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(α+α2ω02)t+A2e(αα2ω02)t

根据初始条件:

v(0)=0 v(0) = 0 v(0)=0

可得
0=VI+A1+A2 0 = V_I + A_1 + A_2 0=VI+A1+A2

根据初始条件:

i(0)=0 i(0) = 0 i(0)=0

以及电流方程:

i(t)=Cdvdt=CA1(−α+α2−ω02)e(−α+α2−ω02)t+CA2(−α−α2−ω02)e(−α−α2−ω02)t \begin{array}{c} i(t) = C\frac{dv}{dt} \\ = CA_1(-\alpha + \sqrt{\alpha^2-\omega_0^2})e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ CA_2(-\alpha - \sqrt{\alpha^2-\omega_0^2})e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} i(t)=Cdtdv=CA1(α+α2ω02)e(α+α2ω02)t+CA2(αα2ω02)e(αα2ω02)t

可得:

0=A1(−α+α2−ω02)+A2(−α−α2−ω02) \begin{array}{c} 0 = A_1(-\alpha + \sqrt{\alpha^2-\omega_0^2}) + \\ A_2(-\alpha - \sqrt{\alpha^2-\omega_0^2}) \end{array} 0=A1(α+α2ω02)+A2(αα2ω02)

联立方程:

0=VI+A1+A2 0 = V_I + A_1 + A_2 0=VI+A1+A2

0=A1(−α+α2−ω02)+A2(−α−α2−ω02) \begin{array}{c} 0 = A_1(-\alpha + \sqrt{\alpha^2-\omega_0^2}) + \\ A_2(-\alpha - \sqrt{\alpha^2-\omega_0^2}) \end{array} 0=A1(α+α2ω02)+A2(αα2ω02)

可得最终的总解为:

v(t)=VI+A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(α+α2ω02)t+A2e(αα2ω02)t

其中,当 α2−ω02≠0\alpha^2-\omega_0^2 \neq 0α2ω02=0 时,

A1=VI(α+α2−ω02)−2α2−ω02A2=VI(−α+α2−ω02)−2α2−ω02 \begin{array}{c} A_1 = \frac{V_I(\alpha + \sqrt{\alpha^2-\omega_0^2})}{-2\sqrt{\alpha^2-\omega_0^2}} \\ A_2 = \frac{V_I(-\alpha + \sqrt{\alpha^2-\omega_0^2})}{-2\sqrt{\alpha^2-\omega_0^2}} \end{array} A1=2α2ω02VI(α+α2ω02)A2=2α2ω02VI(α+α2ω02)

α2−ω02=0\alpha^2-\omega_0^2 = 0α2ω02=0 时,对应后面临界阻尼的情况。

分情况讨论

根据 α2−ω02\alpha^2 - \omega_0^2α2ω02 的正负关系,可以分三种情况讨论:

1. α>ω0\alpha > \omega_0α>ω0,为过阻尼 (Overdamped)

此时 α2−ω02\sqrt{\alpha^2 - \omega_0^2}α2ω02 为实数,v(t) 可以简化为下面这个形式:

v(t)=VI+A1e−α1t+A2e−α2t v(t) = V_I + A_1e^{-\alpha_1t} + A_2e^{-\alpha_2t} v(t)=VI+A1eα1t+A2eα2t

可以绘制如下曲线,只看 t > 0 的部分,可以观察到过阻尼的响应曲线的形式。

过阻尼

2. α<ω0\alpha < \omega_0α<ω0,为欠阻尼 (Underdamped)

原式如下

v(t)=VI+A1e(−α+α2−ω02)t+A2e(−α−α2−ω02)t \begin{array}{c} v(t) = V_I + A_1e^{(-\alpha + \sqrt{\alpha^2-\omega_0^2})t} + \\ A_2e^{(-\alpha - \sqrt{\alpha^2-\omega_0^2})t} \end{array} v(t)=VI+A1e(α+α2ω02)t+A2e(αα2ω02)t

因为 $ \alpha2-\omega_02 < 0 $,所以在根号里可以提取出 -1, 原式可以化简为:

v(t)=VI+A1e−αte(jω02−α2)t+A2e−αte(−jω02−α2)t \begin{array}{c} v(t) = V_I + A_1e^{-\alpha t}e^{(j\sqrt{\omega_0^2-\alpha^2})t} + \\ A_2e^{-\alpha t}e^{(-j\sqrt{\omega_0^2-\alpha^2})t} \end{array} v(t)=VI+A1eαte(jω02α2)t+A2eαte(jω02α2)t

为了简化方程,引入新的参数标记:

ωd=ω02−α2 \omega_d = \sqrt{\omega_0^2 - \alpha^2} ωd=ω02α2

则可简记为

v(t)=VI+A1e−αtejwdt+A2e−αte−jwdt v(t) = V_I + A_1e^{-\alpha t}e^{jw_dt} + A_2e^{-\alpha t}e^{-jw_dt} v(t)=VI+A1eαtejwdt+A2eαtejwdt

根据欧拉公式:

ejωdt=cos(ωdt)+jsin(ωdt) e^{j\omega_dt} = cos(\omega_dt) + jsin(\omega_dt) ejωdt=cos(ωdt)+jsin(ωdt)

可以进一步化简

v(t)=VI+K1e−αtcos(ωdt)+K2e−αtsin(ωdt) \begin{array}{c} v(t) = V_I + K_1e^{-\alpha t}cos(\omega_dt) +\\ K_2e^{-\alpha t}sin(\omega_dt) \end{array} v(t)=VI+K1eαtcos(ωdt)+K2eαtsin(ωdt)

其中

K1=A1+A2,K2=(A1−A2)j K_1 = A_1 + A_2, K_2 = (A_1 - A_2)j K1=A1+A2K2=(A1A2)j

根据初始条件:v(0)=0v(0) = 0v(0)=0,可以推出 K1=−VIK_1 = -V_IK1=VI

又因为:

i(t)=Cdvdt=−CK1αe−αtcos(ωdt)−CK1ωde−αtsin(ωdt)−CK2αe−αtsin(ωdt)+CK2ωde−αtcos(ωdt) \begin{array}{c} i(t) = C\frac{dv}{dt} \\ = -CK_1\alpha e^{-\alpha t}cos(\omega_dt)-\\ CK_1\omega_d e^{-\alpha t}sin(\omega_dt)-\\ CK_2\alpha e^{-\alpha t}sin(\omega_dt) + \\ CK_2\omega_d e^{-\alpha t}cos(\omega_dt) \end{array} i(t)=Cdtdv=CK1αeαtcos(ωdt)CK1ωdeαtsin(ωdt)CK2αeαtsin(ωdt)+CK2ωdeαtcos(ωdt)

带入初始条件:i(0)=0i(0) = 0i(0)=0,可得:

0=−K1α+K2ωdK2=−VIαωd \begin{array}{c} 0 = -K_1\alpha + K_2\omega_d \\ K_2 = -\frac{V_I\alpha}{\omega_d} \end{array} 0=K1α+K2ωdK2=ωdVIα

将得到的 K1, K2 带入可得

v(t)=VI−VIe−αtcos(ωdt)−VIαωde−αtsin(ωdt) \begin{array}{c} v(t) = V_I - V_Ie^{-\alpha t}cos(\omega_dt) -\\ V_I\frac{\alpha}{\omega_d}e^{-\alpha t}sin(\omega_dt) \end{array} v(t)=VIVIeαtcos(ωdt)VIωdαeαtsin(ωdt)

根据以下公式可知,同频率不同幅度的正余弦函数相加,可以写成一个正弦或者余弦的形式,如下:
A1cos(θ)+A2sin(θ)=A12+A22cos(θ−tan−1(A2A1))=A12+A22sin(θ+tan−1(A1A2)) \begin{array}{c} A_1cos(\theta) + A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}cos(\theta-tan^{-1}(\frac{A_2}{A_1}))\\ =\sqrt{A_1^2+A_2^2}sin(\theta+tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)+A2sin(θ)=A12+A22cos(θtan1(A1A2))=A12+A22sin(θ+tan1(A2A1))

A1cos(θ)−A2sin(θ)=A12+A22cos(θ+tan−1(A2A1))=A12+A22sin(θ−tan−1(A1A2)) \begin{array}{c} A_1cos(\theta) - A_2sin(\theta)\\ =\sqrt{A_1^2+A_2^2}cos(\theta+tan^{-1}(\frac{A_2}{A_1}))\\ =\sqrt{A_1^2+A_2^2}sin(\theta-tan^{-1}(\frac{A_1}{A_2})) \end{array} A1cos(θ)A2sin(θ)=A12+A22cos(θ+tan1(A1A2))=A12+A22sin(θtan1(A2A1))

可以把 v(t) 化简为一个余弦的形式

v(t)=VI−VIω0ωde−αtcos(ωdt−tan−1αωd) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VIVIωdω0eαtcos(ωdttan1ωdα)

最终得到欠阻尼条件下 LRC 电路电容两端电压的表达式为:

v(t)=VI−VIω0ωde−αtcos(ωdt−tan−1αωd) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VIVIωdω0eαtcos(ωdttan1ωdα)

其中,

α=R2L \alpha = \frac{R}{2L} α=2LR

ω0=1LC \omega_0= \sqrt{\frac{1}{LC}} ω0=LC1

ωd=ω02−α2 \omega_d = \sqrt{\omega_0^2 - \alpha^2} ωd=ω02α2

可以绘制如下曲线,只看 t > 0 的部分,可以观察到欠阻尼的响应曲线的形式。

欠阻尼

3. α=ω0\alpha = \omega_0α=ω0,为临界阻尼 (Critically damped)

这种情况暂时还没搞明白,后边搞明白了再补充。

快速判断输出波形的方法

通过下面的方法,可以快速判断电容两端的波形

首先计算两个参数

波形的频率ωd=ω02−α2 波形的频率\quad \omega_d = \sqrt{\omega_0^2 - \alpha^2} 波形的频率ωd=ω02α2

品质因数Q=ω02α 品质因数\quad Q = \frac{\omega_0}{2\alpha} 品质因数Q=2αω0

利用 T=2πωdT = \frac{2\pi}{\omega_d}T=ωd2π 可以计算最终震荡的周期,品质因数 Q 表示震荡的周期个数,即震荡 Q 个波形后趋于电压VI。

LRC 理论验证

回忆一下实验中设定的参数:

  • 直流电压源电压 VI=1.3VV_I = 1.3VVI=1.3V
  • 电感 L=3.7mHL = 3.7mHL=3.7mH
  • 电容 C=10uFC = 10uFC=10uF

并且通过调整仿真结果,与实际结果波形对比,可以推测 电阻 R=18ΩR = 18\OmegaR=18Ω

快速推断大概波形

带入上边的公式计算频率和品质因数如下:

ωd=1LC−(R2L)2 \omega_d = \sqrt{\frac{1}{LC} - (\frac{R}{2L})^2} ωd=LC1(2LR)2

带入已知参数

ωd=13.7∗10−3∗10∗10−6−(182∗3.7∗10−3)2 \begin{array}{c} \omega_d = \\ \sqrt{\frac{1}{3.7*10^{-3}*10*10^{-6}} \\- (\frac{18}{2*3.7*10^{-3}})^2} \end{array} ωd=3.7103101061(23.710318)2

解得

ωd=4594.594 \omega_d = 4594.594 ωd=4594.594

可以进一步得到周期

T=2πωd=0.0013675s=1.3675ms T = \frac{2\pi}{\omega_d} = 0.0013675s = 1.3675ms T=ωd2π=0.0013675s=1.3675ms

继续计算品质因数

Q=ω02α=1LCRL=13.7∗10−3∗10∗10−6183.7∗10−3=1.06863244 \begin{array}{l} Q = \frac{\omega_0}{2\alpha} \\ = \frac{\sqrt{\frac{1}{LC}}}{\frac{R}{L}} \\ = \frac{\sqrt{\frac{1}{3.7* 10^{-3} * 10 * 10^{-6}}}}{\frac{18}{3.7*10^{-3}}}\\ = 1.06863244 \end{array} Q=2αω0=LRLC1=3.7103183.7103101061=1.06863244

根据结果可以推断出,波形在震荡一个波形后收敛于输入电压 1.3v,并且波形的周期为 1.3675 毫秒。

精确计算

α=R2L=182∗3.7∗10−3=2432.432ω0=1LC=13.7∗10−3∗10∗10−6=5198.75245 \begin{array}{c} \alpha = \frac{R}{2L} = \frac{18}{2*3.7*10^{-3}} = 2432.432 \\ \omega_0= \sqrt{\frac{1}{LC}} \\ = \sqrt{\frac{1}{3.7* 10^{-3} * 10 * 10^{-6}}} = 5198.75245 \end{array} α=2LR=23.710318=2432.432ω0=LC1=3.7103101061=5198.75245
ωd=ω02−α2=4594.594 \omega_d = \sqrt{\omega_0^2 - \alpha^2} = 4594.594 ωd=ω02α2=4594.594
α<ω0\alpha < \omega_0α<ω0,为欠阻尼,带入公式

v(t)=VI−VIω0ωde−αtcos(ωdt−tan−1αωd) \begin{array}{c} v(t) = V_I -\\ V_I\frac{\omega_0}{\omega_d}e^{-\alpha t}cos(\omega_dt-tan^{-1}\frac{\alpha}{\omega_d}) \end{array} v(t)=VIVIωdω0eαtcos(ωdttan1ωdα)

带入绘图可得

精确计算

LRC 电路仿真验证

通过修改仿真电路,增加电阻 R ,调整 R 的值,使仿真波形与实验结果一致,大概可以看出整个电路中的引入电阻大概为 18 欧,仿真结果与实际结果均与计算结果一致,震荡一个周期后收敛与 1.3v,周期为 1.3ms 左右。

LRC仿真结果

LRC实验结果

参考

麻省理工学院公开课——电路与电子学 p16.二阶系统上

https://www.bilibili.com/video/BV1ts411v7Ep?p=16

麻省理工学院公开课——电路与电子学 p17.二阶系统下

https://www.bilibili.com/video/BV1ts411v7Ep?p=17

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值