2025年社会学与安全科学国际会议(ICSSS 2025)

📚👩‍🔬 2025年社会学与安全科学国际会议:融合创新,共筑安全 🌐

成都,这座融合了历史韵味与现代科技的城市,即将成为全球顶尖学者、研究人员和行业专家的聚集地。 ICSSS 2025旨在探讨社会学与安全科学领域的最新进展和未来趋势,为寻求发布专利的研究生提供一个展示研究成果、拓展专业网络并获取宝贵反馈的理想平台。

大会亮点

  • 跨学科合作:涵盖从城市规划和社会治理到网络安全和个人隐私保护等多个关键领域,强调解决现代社会复杂问题的重要性。
  • 技术创新与知识产权论坛:特别设立的论坛,为希望将科研成果转化为实际应用的研究生提供了宝贵的指导和支持。
  • 深入互动交流机会:参会者可以听取知识产权法律专家的讲座,参与撰写高质量专利申请书的工作坊,并有机会向经验丰富的专业人士展示自己的研究项目。

完整会议主题

社会学:
  • 教育科学
  • 教育技术
  • 知识科学
  • 知识管理
  • 信息管理
  • 大数据与云计算
  • 创新与技术
安全科学:
  • 信息安全
  • 安全人机
  • 风险控制
  • 矿山安全
  • 生产安全
  • 防爆安全
  • 社会与城市安全
  • 工程抗震减震新材料、新结构和技术
  • 救援处置与人员安全
  • 系统安全
  • 安全与密码学
  • 搜索引擎和信息检索
  • 计算机网络与安全
  • 石油与化工安全
  • 电气安全
  • 应急管理与消防安全
  • 航空航天安全
  • 交通安全

参与方式

  1. 旁听参会:无需投稿或演讲,仅参与聆听。
  2. 汇报参会:提交摘要进行10-15分钟口头报告演讲。
  3. 投稿参会:文章将登刊在论文集,并最终提交EI Compendex、Scopus和Inspec等数据库检索。

内容概要:本文档详细介绍了基于弹性架构搜索(Elastic Architecture Search, EAS)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在自动化优化多变量时间序列预测模型结构,提升预测精度鲁棒性,降低计算资源消耗,实现模型轻量化。通过MATLAB实现,项目采用Transformer编码器的多头自注意力机制,结合EAS的弹性权重共享和分阶段搜索策略,解决了高维多变量时间序列的复杂依赖建模、架构搜索计算资源需求高、模型过拟合、多步预测误差积累、数据异构性缺失值处理、复杂模型训练收敛等挑战。最终,项目构建了一个高度模块化和可扩展的系统设计,适用于智能制造、能源管理、智慧交通等多个工业场景。 适合人群:具备一定编程基础,对时间序列预测、深度学习及MATLAB有一定了解的研发人员和研究人员。 使用场景及目标:①自动化优化多变量时间序列预测模型结构,提升预测精度鲁棒性;②降低计算资源消耗,实现模型轻量化;③实现高度模块化可扩展的系统设计,促进人工智能在工业领域的深度应用;④提供科研教学的典范案例工具,探索深度学习架构搜索在时序预测的前沿技术;⑤促进多变量时序数据融合异质信息处理能力,推动MATLAB深度学习工具箱的应用扩展。 其他说明:项目不仅聚焦于模型性能提升,更注重计算资源节约和应用落地的可行性。借助弹性架构搜索自动化调参,减少人工经验依赖,加快模型迭代速度,降低开发门槛。结合Transformer编码器的表达能力,显著改善多变量时间序列预测中的长期依赖捕捉和异质数据融合问题,为各类时间序列分析任务提供一种全新的解决方案。项目通过详细的代码实现和注释,帮助用户理解Transformer机制弹性架构搜索如何协同工作,实现多变量时间序列预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值