第07课:模型的获取和改进

本文详细介绍了机器学习模型的获取过程,包括数据准备、训练、验证和测试集的划分,以及训练过程中的模型改进策略,如数据优化、算法调参和模型类型选择。强调了大量高质量训练数据的重要性,调参的艺术性和模型选择的考虑因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面两篇文章,我们从直观的角度讲解了机器学习的最基本原理,并且解释了机器学习三要素:数据、算法和模型。

“应用机器学习技术”这件事情,具体到微观的行为,其实就是:使用机器学习模型来预测数据,得到预测结果。然后,预测结果可能会作为下一步业务逻辑的依据。

要使用机器学习模型,首先要获得它。在有了数据和算法的情况下,我们需要通过一个过程来获得模型,这个过程就叫做:训练。

获取模型的过程

在前面讲述三要素时我们已经讲过:数据 + 算法 => 模型

enter image description here

获得模型的过程——训练——是将算法应用到数据上进行运算的过程。

笼统而言,为了构建一个模型,我们需要经历以下步骤:

  • Step-1:数据准备。

    • Step-1.1 数据预处理:收集数据、清洗数据、标注数据。
    • Step-1.2 构建数据的向量空间模型(将文本、图片、音频、视频等格式的数据转换为向量)。
    • Step-1.3 将构建好向量空间模型的数据分为训练集、验证集和测试集。
  • Step-2:训练——将训练集输入给训练程序,进行运算。训练程序的核心是算法,所有输入的向量化数据都会按该训练程序所依据的算法进行运算。训练程序输出的结果,就是模型。

  • Step-3:测试——将测试集数据输入给训练获得的模型,得到预

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶锦鲤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值