Rasa 是一个非常灵活的对话系统框架,它的工作流程涉及多个步骤,包括意图识别、槽位填充、对话管理、以及执行自定义动作等。下面是 Rasa 工作流程的详细解释:
1. 用户输入
用户通过对话界面(比如聊天框、语音输入等)发送信息。这个信息可以是自然语言文本,Rasa 将对其进行处理。
2. 自然语言理解(NLU)
当用户输入信息时,Rasa 首先通过 自然语言理解(NLU) 模块对用户的输入进行分析。NLU 的主要任务包括:
a) 意图识别(Intent Recognition)
Rasa 会尝试识别用户的意图,意图是指用户发送消息的主要目的。例如,用户可能发送的消息有:
- “我需要预定一张机票”(意图:预定机票)
- “天气怎么样?”(意图:查询天气)
Rasa 会根据训练数据,判断用户输入的文本属于哪个预定义的意图。
b) 实体提取(Entity Recognition)
Rasa 还会从用户的输入中提取 实体,这些实体通常是对话中的关键信息。例如,在“预定一张从纽约飞往洛杉矶的机票”中,纽约
和 洛杉矶
都是实体,分别表示出发地和目的地。
NLU 模块会尝试识别文本中的实体,并将它们提取出来,用于后续的槽位填充。
- 槽位填充:槽位(slots)是 Rasa 用来存储关键信息的地方,例如存储用户的意图或实体。提取的实体会被填充到槽位中。槽位可以是:
- 文本类型:例如,症状、地点等。
- 列表类型:用于存储多个值(如多个症状)。
3. 对话管理(Core)
经过 NLU 处理后,接下来是 对话管理(Core) 阶段。在这个阶段,Rasa 会决定 下一步 的行动。对话管理的关键是:
a) 对话策略(Policy)
Rasa 使用对话策略来决定在特定情况下应该执行哪一项动作。Rasa 通过对话策略(例如,规则、机器学习策略)来预测最合适的动作。常见的对话策略有:
- MemoizationPolicy:通过记忆先前的对话来预测最合适的动作。
- TEDPolicy:一种基于深度学习的策略,能够根据对话上下文生成合适的响应。
b) 故事(Stories)
对话策略的训练基于 故事(Stories),这些故事是预定义的对话路径,描述了从用户输入到系统响应的一系列步骤。每个故事包含多个步骤,Rasa 会根据训练数据学习并预测下一步动作。
例如,假设我们有一个故事:
stories:
- story: 预定机票流程
steps:
- intent: book_flight
- action: action_ask_date
- intent: inform_date
- action: action_confirm_flight
在这个例子中,当用户发出预定机票的请求时,Rasa 会执行 action_ask_date
来询问用户的出发日期,然后根据用户的响应,执行 action_confirm_flight
。
4. 槽位填充
在对话过程中,Rasa 会通过槽位(slots)来存储用户提供的信息。例如,在用户请求预定机票时,Rasa 可能会问用户:
- “请告诉我您希望的出发日期是什么?”(此时,Rasa 期望从用户处获得一个日期实体,并将其填充到槽位
departure_date
中。)
当系统从用户输入中提取到槽位的值时,Rasa 会将这些值存储在 槽位(slots) 中。这些槽位会在后续的对话中提供信息,用来决定接下来的动作。
5. 执行动作(Actions)
动作(Actions) 是 Rasa 系统中完成特定任务的步骤。动作有以下几种类型:
a) 常规动作
这是 Rasa 默认的动作类型,包括:
- 回复用户:Rasa 可以回复一个文本,告诉用户系统的响应。
- 执行 API 调用:Rasa 可以通过自定义动作调用外部服务,如调用数据库、外部 API 等。
例如:
actions:
- action_ask_date
- action_confirm_flight
b) 自定义动作(Custom Actions)
通过 自定义动作,你可以在 Rasa 中编写 Python 代码来执行复杂的任务。例如,在用户预定机票时,Rasa 可能需要调用外部 API 来获取可用航班信息,这时候你可以创建一个自定义的动作来处理这些操作:
from rasa_sdk import Action
from rasa_sdk.events import SlotSet
class ActionConfirmFlight(Action):
def name(self) -> str:
return "action_confirm_flight"
def run(self, dispatcher, tracker, domain):
departure_date = tracker.get_slot('departure_date')
# 调用外部 API 或数据库,确认机票
dispatcher.utter_message(f"确认您的机票已预定,出发日期:{departure_date}")
return []
c) 内置动作
Rasa 还提供了一些内置动作,比如设置槽位的值、跳过步骤等。常用的内置动作包括:
SlotSet
:设置槽位的值。ActionRestart
:重新开始对话。ActionStop
:结束对话。
6. 对话反馈和回归
一旦动作执行完毕,Rasa 会更新对话状态,继续进行下一步。如果对话流中有多个槽位需要填充,系统会根据用户输入进行交互,直到所有信息都收集完成,然后执行最终动作。
总结 Rasa 的工作流程:
- 用户输入:用户发送一条消息。
- NLU 解析:Rasa 进行意图识别和实体提取。
- 槽位填充:根据 NLU 提取的实体信息填充槽位。
- 对话管理:通过对话策略(如 Memoization、TEDPolicy)决定下一步动作。
- 执行动作:根据对话管理的决策,执行相应的动作,可能涉及回复用户、调用外部服务等。
- 反馈更新:更新对话状态并继续进行下一步对话。
这个流程会在每轮对话中反复执行,直到达到对话的终点。Rasa 结合了 NLU、Core 和自定义动作的功能,使得对话系统既灵活又强大。