基于分层分段的SLAM算法优化(IROS 2021)

文章提出了一种针对SLAM系统的新颖优化策略——分层分段优化,结合轨迹分割和缓冲机制,提高了后端优化效率。通过在段内和段间应用不同的优化策略,兼顾计算效率和定位精度。实验表明,这种方法在效率和准确性上均优于现有高效优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hierarchical Segment-based Optimization for SLAM

作者:Yuxin Tian, Yujie Wang, Ming Ouyang, Xuesong Shi

来源:IROS 2021

论文地址:https://arxiv.org/pdf/2111.04228.pdf

890ddc56895df60d86a5aa860c4b3487.png

摘要: 本文提出了一种用于SLAM系统的分层分段优化方法。首先,我们提出了一种可靠的轨迹分割方法,可用于提高后端优化的效率。然后,我们首次提出了一种缓冲机制来提高分割的鲁棒性。在优化过程中,我们利用全局信息对误差较大的帧进行优化,用插值代替优化更新估计好的帧,根据每一帧的误差分层分配计算量。与基准上的对比实验表明,我们的方法大大提高了优化效率,且几乎没有精度下降,大大优于现有的高效优化方法。

1 引言

随着各种相机的广泛使用和三维计算机视觉的发展,SLAM和SfM系统在过去的几十年中得到了广泛的研究。为了提高建图和定位的精度,使用后端算法优化3D位姿信息是必不可少的环节。

Bundle Adjustment (BA) 是一种常用于 SfM 和 SLAM 系统的优化方法。同时,位姿图是 SLAM 系统中常用的另一种优化

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值