摘要
在高风险的医疗诊断领域,单纯依赖大型语言模型(LLMs)或人类医生都存在局限——LLMs 会幻觉、缺乏常识且有偏见;人类则受经验局限与知识覆盖面的限制。本研究提出一种混合集体智能(Hybrid Collective Intelligence, HCI)方法,将医生的临床推理与 LLM 的信息处理能力结合,对 2,133 个真实感病例(含 40,762 份医生诊断与 5 个最先进 LLM 的诊断输出)进行加权融合。结果显示,混合集体在所有专业与经验层级下的诊断准确率均显著优于人类单独、AI 单独及各自的集体形式。
背景
每年美国约 79.5 万例死亡或永久伤残与诊断错误相关。尽管 LLM 在自然语言处理与多领域问答中表现出色,包括医学在内的众多场景,但它们的结构性缺陷(如幻觉、偏见、缺乏常识让其在临床高风险应用中存在安全隐患。
研究表明,“集体智能”能通过不同专家独立判断的组合提升整体准确性。本研究创新地将人类专家与多个 LLM 视为“同台评审”,利用各自优势与互补性,构建混合集体智能体系。
为什么 1+1>2?关键在于错误类型的差异性:
-
当 AI 漏诊时,医生往往能给出正确答案(尤其在复杂病例中)
-
当医生判断失误时,AI 可能捕捉到被忽略的细节
-
混合团队的诊断 “容错率” 显著更高
举个例子:在一例 “俄亥俄州建筑工人胸痛” 病例中,AI 更易联想到真菌感染(当地高发),而医生可能优先考虑职业相关肺部疾病,二者结合最终锁定 “组织胞浆菌病”。
研究方法
数据来源
-
Human Diagnosis Project (Human Dx)
平台
-
2,133 个经过执业医生审核的文本病例
-
诊断来源:1,370 名主治医师、139 名专科培训医师、2,160 名住院医师(再加 1,037 名医学生用于补充分析)
LLM 选择
- Anthropic Claude 3 Opus
- Google Gemini Pro 1.0
- Meta LLaMA 2 70B
- Mistral Large
- OpenAI GPT-4
每个模型需输出前五个最可能的诊断
融合流程
-
标准化处理
将所有人类与 LLM 的原始诊断映射至 SNOMED CT 唯一 ID,统一同义词、缩写、英式/美式拼写等
-
加权多数投票
- 根据训练集表现为各 LLM 赋予不同权重;所有医生共用一个权重值
- 使用 1/r 规则 按诊断排名赋分
- 采用加权多数投票合成最终列表
-
交叉验证
10 次重复五折交叉验证,确保模型泛化稳定
性能指标
- Top-1 / Top-3 / Top-5 准确率
- 平均倒数排名(MRR)
主要研究结果
1. 多模型集成优于单模型
将多个 LLM 输出组合成 AI 集体,在 Top-5 与 Top-3 准确率上均优于任何单一 LLM,并在多个专科中保持稳定领先。
2. 人机混合集体全线胜出
-
向医生集体加入一个 LLM,可超越纯医生组
-
向 LLM 集体加入一位医生,也能提升整体准确率
-
即使加入表现最差的 LLM,也带来轻微提升。
3. 错误互补性是关键
- 在 46%–51% 的病例中,医生与 LLM 对正确诊断的排名不同
- 当 LLM 完全漏掉正确诊断时,医生在 30%–38% 的病例中能补上,大部分排在第一位
- 这种低相关错误模式让加权投票更易推高正确诊断排名 。
主要创新点
-
开放性答案的自动标准化
基于 SNOMED CT 的全文匹配与向量搜索匹配,处理了同义词、拼写差异与缩写等问题,实现精准对齐。
-
权重化人机投票机制
通过 WMVE(加权多数投票)方式按历史表现分配权重,优胜者得更多表决力。
-
跨模态可迁移性
方法依赖结构化知识体系,可移植至气候政策等其他开放性、高风险领域。
未来研究方向
- 临床实地验证:目前为病例小故事(vignette)测试,需转化到真实临床环境
- 治疗影响评估 :诊断改善是否带来治疗方案优化?
- 偏见与公平性 :混合集体是否能减少 AI 及人类共有的偏见?
- Prompt 工程优化:Tree-of-Thought、自一致性等方法可望进一步提升表现
- 多模态融合 :将影像、声音等数据加入诊断流程
- 决策支持系统化 :研究如何在临床工作流中最佳整合,防止自动化偏见与算法厌恶
结论
混合集体智能不是要取代医生,而是利用人类的临床洞察与 AI 的信息整合能力互补,让医疗诊断更精准、更安全、更公平。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
