算法基础课—搜索与图论(三) 最短路问题——Dijkstra算法、bellman-ford算法、spfa算法、Floyd算法
最短路算法
问题类型
源点——起点,汇点——终点
单源最短路,即起点是固定的,求其到任意点的最短路
多源汇的最短路,给定任意两个点
n点数、m边数
稠密图——用朴素的dj。。
稀疏图——堆优化的。。。
存在负权边——如果求第k条边的,对边数有限制的,只能用Bellman算法
其他情况存在负权边的,用SPFA比较好
最短路问题难点——构建图
如何根据题目的背景,构建图,构建节点,构建边
Djikstra 算法
朴素版的Dijkstra算法
所需数据结构
1、dist[] 数组(int)——用于记录从起到到各个点的最短路径
一开始时dist[start] = 0,其他为无穷大
2、st[] 数组(bool)——用于记录是否在已经确定最短路径的集合中
3、g[][] 邻接矩阵,也可以用邻接表
算法流程
1、初始化dist数组,起点距离为0,其他为正无穷,将st[start] 置为true
2、for(i = 0; i < n; i ++)循环n次
3、在2循环内嵌套循环遍历n个节点,找出当前dist最小的节点,加入st集合,表示已经确定了最短路径
4、对当前dist最小的节点的边进行遍历,先判断是否存在集合st中,如果不存在,即还未确定最短路径,则判断其最短路径dist[j] 是否 > dist[i] + w,如果大于则更新。
核心
算法思想本质上是利用,不断利用已经确定最短路径的点,然后利用其确定了最短路径去更新其他点,然后再继续找出下一个确定最短路径的点,再去更新。
如何找出已经确定最短路径的点?用dist数组判断,当前dist最小,且不存在负边,那么其他的加起来都不会小于它,于是可以如此确定,但是如果存在负边,则不能这样确定,有可能某个点加上负边比当前小。
和Floyd比较类似,区别在,Floyd是利用从1-n的点,遍历他们的边,依次更新他们的距离,而Dijkstra则是每次先确定已经确定最短路径的点,再去更新,这样子是很有可能会小于其原本dist的,减少了更新比较的次数。
缺点
缺点:无法处理负权边
重边和自环的处理
对于重边和自环的处理
在算法中,如果有两条边的起点终点都相同,只取最短的那条边
例子
堆优化的Djikstra 算法
问题的提出
可以发现在朴素版的Djikstra中,需要每次查找当前dist最小值的问题,这一步时间复杂度为O(n2)为了进一步优化,可以采用堆排序的算法,找出最小值为O(1),更新堆为O(logn),这样子总的复杂度是O(logn)。
堆可以采用优先队列进行存储,由于优先队列无法更改其中的值,于是采用直接添加的方式,为了区分是哪个节点设计pair类型的优先队列{a,b} a为dist【】的值,b为下标,pair类型的优先队列总是先比较第一个再比较第二个,这样,就可以比较好的进行最小值的输出。
需要的数据结构
1、堆 优先队列
2、dist数组,记录当前最小情况
3、邻接表(h[],e[],ne[],w[],idx)or 邻接矩阵(g[][])
4、st数组,判断其是否已经确定最短路径
对于重边和自环的问题
视频里说由于是邻接表可以不用考虑???一定是最小的???
但是感觉还是得考虑!
算法流程
1、初始化dist数组,将dist[start]置为0,其余置为0x3f;将第一个信息{0,start}压入堆中
2、设置循环 while (heap.size()) 其实我感觉设置0-n也可以,但是设置0-n如果碰到st[]=true的情况的时候其实是不能叠加迭代次数的,应该还是n,这样不太好设置,不如设置成heap.size()。
3、每次取出堆顶元素即最小值,先判断其是否已经确定最短路径,即st【】。如果已经确定最短路径,则continue,否则,遍历其边,更新dist数组,并将更新的dist信息压入堆中。
4、结果输出,如果dist还是==0x3f3f3f3f,即没有边到达,则输出-1,有则输出对应最短路径。
模板
typedef pair<int, int> PII;
int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({
0, 1}); // first存储距离,second存储节点编号
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({
dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
自己的代码
#include<iostream>
#include<cstring>
#include<queue>//优先队列也是导入的这个头文件
using namespace std;
const int N = 2e5;
int d[N];
bool st[N];
int n, m;
int start = 1;//起始点
int h[N], e[N], ne[N], w[N], idx;
typedef pair<int, int> PII;
priority_queue<PII, vector<PII>, greater<PII>> heap;
void add(int a, int b, int we){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx;
w[idx] = we;
idx ++;
}
int djikstra(){
int i, j;
d[start] = 0;
heap.push({
0,1});//pair类型的优先队列总是先比较first的大小,再比较second大小,所以first为dist的值,second为下标
for(i = 1; i <= n; i ++){
auto min_t = heap.top(