DTI预处理及概率性纤维束追踪

本文介绍了DTI的基本概念及其在评估脑白质各向异性方面的作用。详细讨论了DTI的预处理步骤,包括涡流矫正、脑组织剔除和弥散张量的局部拟合。接着,文章阐述了概率性纤维束追踪技术,特别是使用FSL工具进行BEDPOSTX估计和PROBTRACKX追踪,并解释了关键指标如ADC、FA和MD。最后,提到了追踪效果的检查和参数修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是DTI?

弥散张量成像(DTI)是在弥散加权成像(DWI)基础上发展而来的一种新的磁共振成像技术,它主要利用大脑中水分子弥散信息来成像。弥散张量成像(DTI)是在弥散加权成像基础上发展而来的一种新的磁共振成像技术,可以定量的评价脑白质的各向异性。在此成像过程中,不只用单一或三个梯度方向脉冲,而至少需要施加6个非共线方向弥散敏感梯度。(公式中代表的是一个3D矢量来描述水分子的弥散情况)

基于弥散张量成像的脑白质神经纤维追踪技术是目前可在活体无创地重建纤维的位移方法。准确、快捷的重建人类脑白质内的神经纤维,可以更好的了解一些临床疾病的机制,为脑部手术方案的选择、手术导航等针对性的治疗提供可靠的数据;也为人类认识功能、分析脑认知功能、揭示脑神经的传导机制提供可行的方法。

弥散张量成像是指水分子弥散的各向异性、不均匀组织弥散特征。DWI只有ADC一个标量来描述弥散,只代表弥散梯度磁场施加方向上水分子的弥散特点,而不能完全,正确地评价不同组织各向异性的特点。

 copyright © Yuan_Rhea:https://blog.csdn.net/Yuan_Rhea/article/details/122307892

二、DTI预处理(使用代码)

备注:

  1. 在获取DTI数据时加入多个梯度磁场,当快速切换弥散梯度时会引发涡流效应,从而影响成像磁场的均匀性,产生图像扭曲畸变。在涡流矫正里面是包括了头动矫正的处理,所以在涡流矫正的输入影像不用做头动处理。
  2. Brain Extraction Tool把非脑的组织从全脑中剔除
  3. 在preprocessed和eddy_correct之后,可以进行这一步——弥散张量的局部拟合,从而得到DTI成像的一些基本参数,如FA,MD,M0,V1,V2,V3等等(注:如果只计算probabilistic tractography的话不需要做这一步)

最后生成10个文件:

(1). <basename>_V1 - 1st eigenvector

(2). <basename>_V2 - 2nd eigenvector

(3). <basename>_V3 - 3rd eigenvector

(4). <basename>_L1 - 1st eigenvalue

(5). <basename>_L2 - 2nd eigenvalue

(6). <basename>_L3 - 3rd eigenvalue

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值