Seaborn是对matplotlib的扩展,是一个数据可视化库,提供更高级的API封装,在应用中更加的方便灵活。下面我简单介绍一下他的最基本用法,实际应用的时候,可以直接从文档中查找这个库,这时候使用就很快捷了。
首先将使用它所需要的库导入进来,当然,其中包括numpy之类的是为了演示它的功能才导入的,大家要先理解一下每个库的作用。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame
import seaborn as sns # seaborn习惯简写为sns
直方图和密度图
如果在 ipython,可以通过 %matplotlab 来解决每次通过 plt.show() 来显示图像,或者 jupyter notebook 中可以使用%matplotlib inline,后面程序我就省略了 plt.show() ,可以根据自己的环境选择显示图像的方式。
matplotlib
s1 = Series(np.random.randn(1000)) # 生成1000个点的符合正态分布的随机数
plt.hist(s1) # 直方图,也可以通过plot(),修改里面kind参数实现
s1.plot(kind='kde') # 密度图
seaborn
s1 = Series(np.random.randn(1000)) # 生成1000个点的符合正态分布的随机数
sns.distplot(s1,hist=True,kde=True,rug=True) # 前两个默认就是True,rug是在最下方显示出频率情况,默认为False
# bins=20 表示等分为20份的效果,同样有label等等参数
sns.kdeplot(s1,shade=True,color='r') # shade表示线下颜色为阴影,color表示颜色是红色
sns.rugplot(s1) # 在下方画出频率情况