【机器学习】K-Means聚类算法

本文介绍了K-Means聚类算法,这是一种无监督学习方法,用于将数据自组织成k个簇。文章详细阐述了算法步骤,包括簇内点的紧密连接和簇间距离最大化。通过实例展示了如何使用sklearn库实现K-Means,并讨论了如何选择最佳的簇数k,引入了轮廓系数作为评估指标。最后提到了聚类结果可能不是全局最优,并建议多次尝试以找到最佳分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7c26275e76db0a8cccdfdc129e403792.jpeg

K-Means是一种聚类算法,与之前提到的朴素贝叶斯等算法不同,它属于无监督学习。无监督学习是什么意思呢?简单来说,之前的算法中我们是利用特征 x 和类别 y 来进行训练、分类的,而无监督学习是指不需要我们提供具体的类别 y ,而让数据自己聚在一起,形成 k 个簇,以实现分类的目的。

具体方法是通过对给定的样本进行划分,分为 k 个簇,使得簇内的点尽量紧密的连在一起,而簇间的距离尽量大,评判的标准就是通过欧氏距离。

c0d493d925417e70610a21b662142282.png

主要包括两个步骤(首先初始化 k 个质心):

  1. 分别计算样本点与各个质心的距离,来判断样本归属于哪个簇;

  2. 寻找得到的簇的新质心,并更新。

重复循环上述两步,直到平均距离最小,即找到了最佳的质心以及簇的分类。

b0d09bcaa833c092254e1fc96e6eec01.gif

接下来看看如何通过程序来实现。首先需要用到sklearn中的方法来生成一些用来测试的数据——make_blobs。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值