Redis缓存三兄弟:穿透、击穿、雪崩

目录

1. 缓存穿透(Cache Penetration)

是什么?

如何解决?

2. 缓存击穿(Cache Breakdown)

是什么?

如何解决?

3. 缓存雪崩(Cache Avalanche)

是什么?

如何解决?

总结对比


在日常开发中,尤其是高并发系统里,缓存(Redis/Memcached)是提升性能、保护数据库的利器。其中最经典的三个问题就是:缓存穿透、缓存击穿和缓存雪崩

它们仨名字相似,但成因和解决方案截然不同。今天我们就来彻底搞懂它们!

1. 缓存穿透(Cache Penetration)

是什么?

缓存穿透是指查询一个数据库中根本不存在的数据。这意味着这个请求一定会穿透缓存,直接抵达数据库。如果有恶意攻击者持续用大量不存在的ID来请求,会给数据库带来巨大压力甚至压垮它。

简单比喻: 你在图书馆(缓存)查一本书,发现没有,于是去总书库(数据库)查,总书库也告诉你没有。然后你又用另一个根本不存在的书名重复这个过程,最终把图书管理员(数据库)累垮了。

如何解决?

  1. 缓存空对象(Null Object Caching)
// 伪代码示例
public Object getData(String key) {
    Object data = cache.get(key);
    if (data != null) {
        // 缓存有数据,直接返回(即使是空值)
        return data;
    }
    data = db.query(key); // 查询数据库
    if (data == null) {
        // 数据库也没有,缓存空值,设置短过期时间
        cache.set(key, null, 300); // 过期时间5分钟
    } else {
        // 数据库有,缓存真实数据
        cache.set(key, data, 3600); // 过期时间1小时
    }
    return data;
}
  • 做法: 即使从数据库没查到,也在缓存中存一个空值(如 null),并设置一个较短的过期时间(如1-5分钟)。
  • 优点: 实现简单,能有效应对短期的大量攻击。
  • 缺点: 可能会在缓存中存储大量无用的空键,如果攻击的key每次都变,效果会打折扣。

        2.布隆过滤器(Bloom Filter)

  • 做法: 在缓存之前,设置一个布隆过滤器。它是一个很长的二进制向量和一系列随机映射函数,用于快速判断一个元素是否绝对不存在于某个集合中
  • 流程: 请求 -> 布隆过滤器判断 -> 如果判断为“不存在”,则直接返回空 -> 如果判断为“存在”,才去查询缓存/数据库。
  • 优点: 内存占用极小,能从源头彻底阻止不存在的key的请求。
  • 缺点: 有极小的误判率(判断为存在,但实际可能不存在),且无法删除数据(可使用变体Counting Bloom Filter)。

2. 缓存击穿(Cache Breakdown)

是什么?

缓存击穿是指一个热点key在缓存过期的瞬间,同时有大量的请求过来。这些请求发现缓存过期,都会立刻去加载数据库数据并回设缓存。这个瞬间的并发压力全部落在数据库上,就像在屏障上击穿了一个洞。

简单比喻: 网红店(热点key)限时优惠(缓存过期)结束的瞬间,大门重新打开,无数等待已久的人(并发请求)一拥而入,直接把柜台(数据库)挤爆了。

如何解决?

  1. 设置热点数据永不过期
  • 做法: 对于极热点数据,可以设置逻辑过期时间。即在value中存储一个过期时间字段,程序判断是否过期,而不是真的让Redis使其失效。
  • 流程: 发现逻辑过期后,程序会发起一个异步请求去更新缓存,而在更新期间,旧的缓存数据依然可以对外服务。

        2.互斥锁(Mutex Lock)

// 伪代码示例:使用互斥锁
public Object getData(String key) {
    Object data = cache.get(key);
    if (data == null) { // 缓存失效
        if (lock.tryLock()) { // 尝试获取分布式锁
            try {
                data = db.query(key); // 只有一个线程查询数据库
                cache.set(key, data, 3600);
            } finally {
                lock.unlock();
            }
        } else {
            // 没拿到锁的线程,等待片刻后重试或返回默认值
            Thread.sleep(100);
            return getData(key); // 重试
        }
    }
    return data;
}
  • 做法: 当缓存失效时,不是所有线程都能去查询数据库。只允许一个线程(如使用Redis的 setnx 命令)去查询数据库并重建缓存,其他线程等待或返回旧数据(如果允许)。
  • 优点: 强一致性,能有效减轻数据库压力。
  • 缺点: 性能有损耗,可能存在死锁风险,实现复杂度稍高。

3. 缓存雪崩(Cache Avalanche)

是什么?

缓存雪崩是指缓存中大量的key在同一时间(或时间段)过期,或者Redis缓存服务器直接宕机。导致所有请求都无法命中缓存,全部涌向数据库,导致数据库瞬时压力过大而崩溃,就像雪崩一样。

简单比喻: 很多家网红店(大量key)都在同一分钟结束优惠(同时过期),所有等待的顾客(大量请求)同时冲向各家店铺的柜台(数据库),导致整个商圈(系统)瘫痪。

如何解决?

  1. 错开过期时间
// 设置缓存时,基础时间 + 随机时间
int expireTime = 3600 + new Random().nextInt(300); // 3600 ± 300秒
cache.set(key, data, expireTime);
  • 做法: 给缓存数据的过期时间加上一个随机值(如1-5分钟的随机数),避免大量key在同一时刻过期。
  • 优点: 实现简单,效果显著。

        2.构建高可用缓存集群

  • 做法: 通过Redis的哨兵(Sentinel)或集群(Cluster)模式,实现缓存服务的高可用。即使个别节点宕机,整个服务依然可用,防止“全军覆没”。

        3.服务降级与熔断(Hystrix/Sentinel)

  • 做法: 在应用层使用熔断降级组件。当检测到数据库访问慢或失败率过高时,自动进行熔断(直接返回默认值、友好提示),不再访问数据库,保护数据库不被拖垮。

总结对比

问题

原因

关键解决思路

缓存穿透

查询不存在的数据

1. 缓存空对象 2. 布隆过滤器

缓存击穿

单个热点key过期,并发高

1. 永不过期(逻辑过期) 2. 互斥锁

缓存雪崩

大量key同时过期或缓存宕机

1. 错开过期时间 2. 高可用集群

理解这三者的区别并采取正确的应对策略,是构建高并发、高可用系统的必备技能。希望这篇博客能帮你理清思路!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值