目录
在日常开发中,尤其是高并发系统里,缓存(Redis/Memcached)是提升性能、保护数据库的利器。其中最经典的三个问题就是:缓存穿透、缓存击穿和缓存雪崩。
它们仨名字相似,但成因和解决方案截然不同。今天我们就来彻底搞懂它们!
1. 缓存穿透(Cache Penetration)
是什么?
缓存穿透是指查询一个数据库中根本不存在的数据。这意味着这个请求一定会穿透缓存,直接抵达数据库。如果有恶意攻击者持续用大量不存在的ID来请求,会给数据库带来巨大压力甚至压垮它。
简单比喻: 你在图书馆(缓存)查一本书,发现没有,于是去总书库(数据库)查,总书库也告诉你没有。然后你又用另一个根本不存在的书名重复这个过程,最终把图书管理员(数据库)累垮了。
如何解决?
- 缓存空对象(Null Object Caching)
// 伪代码示例
public Object getData(String key) {
Object data = cache.get(key);
if (data != null) {
// 缓存有数据,直接返回(即使是空值)
return data;
}
data = db.query(key); // 查询数据库
if (data == null) {
// 数据库也没有,缓存空值,设置短过期时间
cache.set(key, null, 300); // 过期时间5分钟
} else {
// 数据库有,缓存真实数据
cache.set(key, data, 3600); // 过期时间1小时
}
return data;
}
- 做法: 即使从数据库没查到,也在缓存中存一个空值(如
null
),并设置一个较短的过期时间(如1-5分钟)。 - 优点: 实现简单,能有效应对短期的大量攻击。
- 缺点: 可能会在缓存中存储大量无用的空键,如果攻击的key每次都变,效果会打折扣。
2.布隆过滤器(Bloom Filter)
- 做法: 在缓存之前,设置一个布隆过滤器。它是一个很长的二进制向量和一系列随机映射函数,用于快速判断一个元素是否绝对不存在于某个集合中。
- 流程: 请求 -> 布隆过滤器判断 -> 如果判断为“不存在”,则直接返回空 -> 如果判断为“存在”,才去查询缓存/数据库。
- 优点: 内存占用极小,能从源头彻底阻止不存在的key的请求。
- 缺点: 有极小的误判率(判断为存在,但实际可能不存在),且无法删除数据(可使用变体Counting Bloom Filter)。
2. 缓存击穿(Cache Breakdown)
是什么?
缓存击穿是指一个热点key在缓存过期的瞬间,同时有大量的请求过来。这些请求发现缓存过期,都会立刻去加载数据库数据并回设缓存。这个瞬间的并发压力全部落在数据库上,就像在屏障上击穿了一个洞。
简单比喻: 网红店(热点key)限时优惠(缓存过期)结束的瞬间,大门重新打开,无数等待已久的人(并发请求)一拥而入,直接把柜台(数据库)挤爆了。
如何解决?
- 设置热点数据永不过期
- 做法: 对于极热点数据,可以设置逻辑过期时间。即在value中存储一个过期时间字段,程序判断是否过期,而不是真的让Redis使其失效。
- 流程: 发现逻辑过期后,程序会发起一个异步请求去更新缓存,而在更新期间,旧的缓存数据依然可以对外服务。
2.互斥锁(Mutex Lock)
// 伪代码示例:使用互斥锁
public Object getData(String key) {
Object data = cache.get(key);
if (data == null) { // 缓存失效
if (lock.tryLock()) { // 尝试获取分布式锁
try {
data = db.query(key); // 只有一个线程查询数据库
cache.set(key, data, 3600);
} finally {
lock.unlock();
}
} else {
// 没拿到锁的线程,等待片刻后重试或返回默认值
Thread.sleep(100);
return getData(key); // 重试
}
}
return data;
}
- 做法: 当缓存失效时,不是所有线程都能去查询数据库。只允许一个线程(如使用Redis的
setnx
命令)去查询数据库并重建缓存,其他线程等待或返回旧数据(如果允许)。 - 优点: 强一致性,能有效减轻数据库压力。
- 缺点: 性能有损耗,可能存在死锁风险,实现复杂度稍高。
3. 缓存雪崩(Cache Avalanche)
是什么?
缓存雪崩是指缓存中大量的key在同一时间(或时间段)过期,或者Redis缓存服务器直接宕机。导致所有请求都无法命中缓存,全部涌向数据库,导致数据库瞬时压力过大而崩溃,就像雪崩一样。
简单比喻: 很多家网红店(大量key)都在同一分钟结束优惠(同时过期),所有等待的顾客(大量请求)同时冲向各家店铺的柜台(数据库),导致整个商圈(系统)瘫痪。
如何解决?
- 错开过期时间
// 设置缓存时,基础时间 + 随机时间
int expireTime = 3600 + new Random().nextInt(300); // 3600 ± 300秒
cache.set(key, data, expireTime);
- 做法: 给缓存数据的过期时间加上一个随机值(如1-5分钟的随机数),避免大量key在同一时刻过期。
- 优点: 实现简单,效果显著。
2.构建高可用缓存集群
- 做法: 通过Redis的哨兵(Sentinel)或集群(Cluster)模式,实现缓存服务的高可用。即使个别节点宕机,整个服务依然可用,防止“全军覆没”。
3.服务降级与熔断(Hystrix/Sentinel)
- 做法: 在应用层使用熔断降级组件。当检测到数据库访问慢或失败率过高时,自动进行熔断(直接返回默认值、友好提示),不再访问数据库,保护数据库不被拖垮。
总结对比
问题 | 原因 | 关键解决思路 |
缓存穿透 | 查询不存在的数据 | 1. 缓存空对象 2. 布隆过滤器 |
缓存击穿 | 单个热点key过期,并发高 | 1. 永不过期(逻辑过期) 2. 互斥锁 |
缓存雪崩 | 大量key同时过期或缓存宕机 | 1. 错开过期时间 2. 高可用集群 |
理解这三者的区别并采取正确的应对策略,是构建高并发、高可用系统的必备技能。希望这篇博客能帮你理清思路!