数据扩充和数据预处理

数据扩充是防止过拟合、提升模型性能的有效手段,包括水平翻转、随机抠图等方法。在图像检测和分割任务中,扩充时需同步处理标记数据。特殊方法如Fancy PCA和GAN数据扩充引入了更复杂的技术。数据预处理中的中心式归一化通过对训练集减均值来消除共性,增强样本间差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:《解析深度学习——卷积神经网络原理与视觉实践》

网址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf

                                                                                                 数据扩充

有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升,但实际使用时需要“量体裁衣”。

更多图像数据扩充方法代码可参见:https://github.com/alegu/imgaug

注:如果是 图像检测任务 或者是 图像分割任