目标函数(损失函数,代价函数)

深度网络的目标函数结合样本误差与正则项指导模型学习。分类任务中,交叉熵、合页损失和坡道损失等用于提高抗噪能力;大间隔交叉熵和中心损失关注类间距离和类内差异。回归任务则采用L1、L2损失函数,Tukey's biweight损失提供鲁棒性。其他任务如语义分割,目标函数优化边界精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度网络中的目标函数通过样本的预测结果与真实标记产生的误差反向传播指导网络参数学习与表示学习。

为防止模型过拟合或达到其他训练目标(如希望得到稀疏解),正则项通常作为对参数的约束也会加入目标函数中一起指导模型训练。

一、分类任务目标函数

(1)普通分类函数

  • 交叉熵损失函数

  • 合页损失函数

  • 坡道损失函数——非凸损失函数,也常被称为“鲁棒损失函数”

特点:抗噪

这类损失函数的共同特点是在分类(回归)误差较大区域进行了“截断”,使得较大的误差不再大程度影响整个误差函数。

(2)考虑增大类间距离,缩小类内差异等因素提出了一些新的损失函数(显示的考虑特征判别性学习)

  • 大间隔交叉熵损失函数——主要考虑增大类间距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值