深度网络中的目标函数通过样本的预测结果与真实标记产生的误差反向传播指导网络参数学习与表示学习。
为防止模型过拟合或达到其他训练目标(如希望得到稀疏解),正则项通常作为对参数的约束也会加入目标函数中一起指导模型训练。
一、分类任务目标函数
(1)普通分类函数
- 交叉熵损失函数
- 合页损失函数
- 坡道损失函数——非凸损失函数,也常被称为“鲁棒损失函数”
特点:抗噪
这类损失函数的共同特点是在分类(回归)误差较大区域进行了“截断”,使得较大的误差不再大程度影响整个误差函数。
(2)考虑增大类间距离,缩小类内差异等因素提出了一些新的损失函数(显示的考虑特征判别性学习)
- 大间隔交叉熵损失函数——主要考虑增大类间距离