- 博客(713)
- 收藏
- 关注
原创 Ollama:一个在本地部署、运行大型语言模型的工具
本文介绍了Ollama工具的部署和使用方法。Ollama是一个支持在本地机器上运行大型语言模型(LLM)的工具,兼容macOS、Linux和Windows平台。文章详细讲解了Linux系统的安装步骤,包括通过命令行安装、查看服务状态和版本验证。在配置部分,说明了如何修改HOST设置实现远程访问、自定义模型存储路径、指定GPU运行等关键配置,并提供了权限设置和问题排查方法。最后列举了Ollama的主要命令功能,包括模型创建、运行、管理等操作,其命令风格与Docker类似。通过浏览器访问测试可确认服务是否正常运
2025-09-11 11:37:15
505
原创 大模型好书推荐 | 大模型RAG实战:RAG原理、应用与系统构建(附PDF)
《大模型RAG实战:RAG原理、应用与系统构建》是一本由NLP和AI领域专家撰写的实战指南,系统介绍了检索增强生成(RAG)技术的原理、发展与应用。全书从基础概念到高阶技术,分为初级、高级和超级RAG三个阶段展开讲解,涵盖检索技术、生成模型及其融合方法。书中包含丰富的实战案例与代码实现,如知识库问答系统和企业信息检索应用,帮助读者掌握RAG系统的构建与优化。该书兼具权威性、系统性和前沿性,适合开发者与AI从业者学习参考。
2025-09-11 11:30:47
606
原创 7000长文:一文读懂Agent,大模型的下一站_agent介绍 改写标题 7000字长文详解Agent:大模型的下一个前沿方向
摘要: Agent(智能体)是基于大模型的自主决策实体,具备任务规划、记忆和工具调用能力,能模拟人类“计划-执行-学习”的完整过程。相比传统被动工具,Agent具有主动性和仿主体性,可自主发现问题、设定目标并执行任务。当前Agent主要分为单体Agent、多Agent协作和人机交互三种类型。从思维链(CoT)到Agent的演进中,大模型通过分解复杂问题为子步骤(CoT)提升推理能力,而Agent则为其提供了动态决策框架,使大模型能处理更复杂的现实任务。Agent不是新技术,而是对大模型的创新管理方式,推动其
2025-09-11 11:27:00
643
原创 逼自己一把练完这48页你的Agent搭建就牛了!!
AI Agent通过感知、记忆、规划决策和执行四个步骤实现任务自动化。它利用传感器获取环境信息,存储历史数据辅助决策,分析数据制定最优方案,并借助工具执行操作。相关学习资料已整理成文档免费分享,包含完整流程和实践案例,帮助开发者构建高效AI Agent。
2025-09-11 11:21:00
188
原创 6000字长文告诉你:大模型「训练」与「微调」概念详解_post-pretrain
1、大模型预训练与微调的基本流程2、预训练、训练、后期预训练、微调的区别3、大模型训练与微调的一些概念,如:Post-pretrain、SFT、RLHF、模型对齐、Lora、Q-Lora、大模型量化、微调指标、微调参数、大模型评测指标
2025-09-11 11:18:14
607
原创 速搭建专业AI知识库的开源工具Ragflow,零基础入门到精通,看这篇就够了!赶紧收藏!
摘要:RAGFlow是一款基于深度文档理解的开源RAG引擎,旨在解决当前检索增强生成技术存在的幻觉、拒答等问题。它支持处理多种文档格式(Word、PDF、图片等),采用模板化分块技术提高文本处理的可解释性,并通过多路召回和融合重排序提升回答质量。RAGFlow具备异构数据源兼容性,可构建可视化知识库,实现答案溯源,为企业和个人提供高效的RAG工作流程解决方案。其核心组件DeepDoc结合OCR和布局识别技术,能精准提取复杂文档中的结构化信息。(149字)
2025-09-05 10:57:48
538
原创 【大模型项目实战】练完这些项目,天下没有再难倒你的大模型_大模型岗位项目练习
大模型的应用潜力在于与其他业务场景的深度融合,这需要通过大量实战项目来掌握。练习项目不仅能加深对大模型原理的理解,还能培养业务逻辑思维,从6B到65B不同规模的训练、微调、分布式训练到RLHF等全流程技术都需要实践积累。为帮助学习者快速入门,现已推出《大模型项目实战》教材及配套AI学习资源包,包含完整的大模型技术资料,可免费领取。
2025-09-05 10:44:48
455
原创 手把手带你搭建RAGflow,专业AI知识库的开源工具,RAGflow零基础入门到精通,看这一篇就够了!
摘要: RAGFlow是一款基于深度文档理解的开源RAG(检索增强生成)引擎,旨在解决当前RAG技术存在的幻觉、拒答和回答不完整等问题。它支持多种文件格式(如PDF、Word、Excel等),通过智能模板化分块技术实现可控可解释的文本处理,并采用多路召回与融合重排序提升检索精度。RAGFlow的核心能力包括深度文档解析(如OCR、布局识别)、可视化分块调整及精准知识提取,确保生成回答的准确性和可追溯性。该工具适用于构建专业AI知识库,显著提升问答系统与智能客服的可靠性。 (150字)
2025-09-05 10:42:29
607
原创 AI浪潮!后端程序员转型大模型应用开发的2025黄金机遇,零基础突围路线图!非常详细建议收藏!
大模型时代来临,程序员迎来职业转型黄金期。2025年全球大模型产业规模突破5000亿美元,核心岗位缺口超百万,资深算法工程师年薪近200万。传统开发岗位内卷加剧之际,大模型领域以470%的岗位增速和3.2万平均月薪成为新蓝海。文章分析了四大黄金岗位:AI大模型全栈工程师(转行友好度最高)、算法工程师、应用开发工程师和AI产品经理,并给出三大转型策略:技能嫁接法、高回报技术栈组合和微项目实践。同时警示需避开死磕数学、忽视行业知识等陷阱,提供从学习到offer的六个月转型路线图。随着工具链成熟和开源生态爆发,零
2025-08-29 15:30:07
791
原创 一文吃透 AI 智能体(Agent):从基础到核心,这篇干货总结不容错过
AI Agent(智能体)是一种能自主处理任务的AI系统,基于大语言模型(LLM)构建,具备感知、决策和行动能力。其核心架构包括规划(任务分解与反思)、记忆(感官/短期/长期)和工具调用(API交互)三大模块。AI Agent通过思维链(COT)、多Agent协同等技术实现复杂任务处理,并分为单Agent、多Agent和混合工作模式。相比传统AI,它具备自然交互、持续进化和场景适配优势,但存在可靠性、法律风险和成本等局限。对企业而言,AI Agent能优化业务流程;对个人而言,掌握AI驱动能力将成为未来竞争
2025-08-29 15:13:00
734
原创 【大模型微调】一文掌握7种大模型微调的方法
本文深入探讨了大型语言模型(LLM)微调的基本原理与技术方法。主要内容包括: 理论基础:解析LLM预训练(无监督学习)与微调(任务适配)两阶段训练机制,强调微调在增强模型领域专精能力中的关键作用。 架构剖析:以Transformer为例,详解输入嵌入、编码器/解码器层(含多头注意力机制)、输出处理等核心模块的功能定位。 微调技术:系统介绍参数高效微调(PEFT)方法: LoRA:通过低秩矩阵实现权重微调 QLoRA:结合4位量化与低秩适配 适配器调整:插入可训练微型网络模块 其他技术如前缀调整、提示调整等
2025-08-21 13:43:01
730
原创 在AI时代,程序员最应该加强的技能是什么?——掌握大模型应用能力
2025年,人工智能技术已深度融入各行各业,尤其是以大模型(Large Language Models, LLMs)为代表的生成式AI,正在重塑软件开发的范式。从自动补全代码的GitHub Copilot,到能生成完整应用原型的AI助手,再到基于大模型构建的智能客服、内容生成系统,AI不再只是“辅助工具”,而是逐渐成为“核心生产力”。在这样的背景下,程序员最应该加强的技能,已不再是某一种编程语言或框架的熟练度,而是对大模型的理解、应用与集成能力。
2025-08-21 11:55:41
1097
原创 本地部署大模型?Ollama 部署和实战,看这篇就够了!_ollama本地部署
本文介绍了如何在本地部署和运行大模型工具Ollama,支持Mac、Windows和Linux系统。Linux可通过一键脚本或Docker安装,并提供了配置修改指南。Ollama支持从0.5B到236B的多种模型,用户可根据设备配置选择合适的模型。文章还介绍了Ollama的常用命令和模型库,帮助用户快速上手使用这一便捷的大模型本地运行工具。通过Ollama,用户可以轻松在本地实现大模型的部署和应用。
2025-08-21 10:54:48
1153
原创 2025大模型面试核心考点合集:面试必问八股文,背完通过率98%,大模型面试题库大全(含答案)—一篇在手,offer不再愁,面试必备!
本文总结了当前大模型算法岗常见面试题及答案,内容涵盖基础和进阶两大方向。基础篇包括主流开源模型体系、大模型架构、词表实现方法、注意力机制等核心知识点;进阶篇探讨了输入长度限制、复读机问题等实战挑战。随着大模型技术快速发展,相关岗位竞争日益激烈,掌握这些面试要点将有助于求职者脱颖而出。文章还提供了多模态大模型落地案例,帮助读者全面了解行业技术前沿。
2025-08-14 16:09:40
1117
原创 从RAG到Graph RAG:解锁大模型深度推理与可解释性
摘要 Graph RAG正成为企业智能化的新一代核心技术,通过融合知识图谱与生成式AI,突破了传统RAG在复杂推理和可解释性方面的局限。相比传统RAG仅实现简单检索,Graph RAG支持多跳推理、关系映射和可追溯回答,在企业级应用中准确率提升显著(如Writer平台达86.31%)。Doordash、Vimeo等企业案例证明,这种"生成式+结构化+可解释"的智能引擎能有效提升决策质量和业务效率,标志着企业AI从信息检索迈向深度推理的新阶段。
2025-08-14 15:58:15
959
原创 【Llama3:8b】手把手教你如何在本地部署 自己的 AI 大模型_本地部署ai大模型
AI时代本地部署大模型的必要性及解决方案 在AI时代,本地部署大模型成为企业刚需:1)保障数据安全,避免核心数据外泄;2)实现垂直领域定制化需求。推荐采用Llama3:8b开源模型,配合Ollama框架部署,结合Llama.cpp进行量化优化,使用Unsloth进行训练微调。该方案具有低算力需求、优秀上下文记忆、灵活API接口等优势,支持本地训练保护数据隐私,是兼顾性能与安全的理想选择。(149字)
2025-08-14 15:21:40
921
原创 大模型入门必读的9本硬核好书,值得反复研读!豆瓣评分超9.0_大模型书籍推荐知乎
这篇文章推荐了八本关于大模型和深度学习的经典书籍,涵盖从基础理论到实战应用的全方位内容。其中包括《从零开始大模型开发与微调》《大规模语言模型》《大规模应用开发极简入门》等专业书籍,系统讲解了大模型开发、微调技术及工程实践。另有《一本书读懂AIGC》《GPT图解》等科普读物,以通俗方式介绍AIGC和GPT技术原理与应用。所有书籍资料提供免费PDF下载,适合不同层次的AI学习者参考。
2025-07-28 14:14:29
505
原创 草履虫都看得懂的向量数据库教程,一文就够了
向量数据库的要点总结什么是向量数据库?• 用于存储、索引、查询和检索高维向量数据。• 特别适合处理非结构化数据(如图像、音频、文本)。• 实现传统数据库难以完成的高级分析和相似性搜索。传统数据库的局限性• 无法理解非结构化数据的意义。• 无法有效搜索或分类复杂的文档、音频和图像数据。
2025-07-28 13:50:55
842
原创 一篇文章带你知道:什么是大模型?
本文系统介绍了大模型的基础概念、分类及应用,重点阐述了大语言模型(LLM)的Transformer架构原理和核心机制。内容涵盖:1)大模型定义及其与小模型的区别;2)按输入数据和应用领域分类;3)LLM的注意力机制、位置编码等关键技术;4)企业数字化中的典型应用场景;5)完整的学习路线图,包括API开发、微调部署等7个进阶阶段。文章为开发者提供了从理论到实践的全面指导,帮助掌握大模型开发能力,提升AI时代竞争力。
2025-07-28 13:43:10
772
原创 3年Java程序员转行AI大模型,自学成功上岸!我的真实经历分享
大家好,我是一个有3年Java开发经验的程序员,原本在一家中型互联网公司做后端开发,写业务代码、修bug、改需求,日复一日。直到2023年,大模型的浪潮席卷而来,我意识到:AI时代真的来了,而我不想只是旁观者。于是,我决定转行AI大模型方向,从零开始自学,最终成功上岸,进入一家AI初创公司做LLM方向的算法工程师。今天想把这段经历分享给大家,希望能给有类似想法的你一些启发。
2025-07-22 11:19:02
880
原创 2025版最新基于Java的大模型应用工程实践,零基础入门到精通,收藏这篇就够了
摘要: 当前,大模型作为新质生产力的代表,正加速在各行业落地。Python生态凭借丰富的AI工具链(如PyTorch、HuggingFace)占据主导,涌现出Dify、LangChain等开源框架,但成熟度不足。相比之下,Java生态虽在AI计算领域薄弱,但凭借Spring等企业级开发生态优势,正通过LangChain4J、Spring-AI等框架追赶。大模型应用需结合Python的模型能力与Java的企业级中间件,构建分层架构:底层由Python提供模型API,上层由Java处理业务逻辑。访问大模型可通过
2025-07-22 11:09:01
880
原创 RAG 实践指南:使用Ollama与RagFlow构建本地知识库_ragflow ollama
本文介绍了利用Ollama+RagFlow搭建本地知识库问答系统的实现方案。通过Docker部署RagFlow服务,连接本地Ollama运行的Qwen2大模型,实现文档上传、知识库构建和自然语言交互功能。文章详细记录了安装部署过程,包括系统要求、Docker配置、模型连接和知识库创建等关键步骤,并展示了实际问答效果。作者指出该方案在个人场景下表现良好,但在企业级应用中需要结合多路召回、重排序等技术提升效果,并建议参考AI原生数据库等创新架构来处理复杂的企业数据场景。
2025-07-22 10:49:55
639
原创 Ollama 本地运行大模型(LLM)完全指南_ollama token速度计算
Ollama 是一个开源工具,支持在本地便捷部署和运行大语言模型(LLM)。文章详细介绍了其安装方法(支持MacOS、Windows、Linux及Docker容器运行)、模型下载与运行、自定义模型导入、系统提示配置等核心功能。同时涵盖了CLI命令、REST/Python API、日志调试、服务化部署、模型存储管理以及OpenAI兼容性等实用技巧。特别针对企业本地化部署需求,提供了CPU/GPU模式下的Docker配置方案,帮助用户在无云端依赖的情况下实现私有化LLM应用。
2025-07-22 10:34:24
1121
原创 18种RAG技术大比拼:谁才是检索增强生成的最佳选择?
RAG技术大比拼:从基础到进阶的检索增强生成方案 本文系统比较了6种主流RAG技术,评估其检索增强生成效果。基础Simple RAG采用固定文本块分割,评分为0.4;语义分块尝试按语义划分,但效果反而下降(0.3);上下文增强检索引入邻居文本块,显著提升至0.6;上下文块头添加描述性标题,评分为0.5;文档增强技术生成相关问题,表现最佳(0.8);查询转换通过重写和分解查询,获得0.5分。实验表明,文档增强技术结合问题生成最能提高检索准确性,为当前最优解决方案。这些发现为RAG系统优化提供了重要参考。
2025-07-15 13:34:06
638
原创 后端开发转大模型应用开发为何容易?好时机
摘要: 后端开发者转型大模型应用开发相对容易,因其已有技术基础,仅需补充大模型相关知识。岗位招聘更看重后端经验与大模型应用能力,而非算法微调。面试内容较少且答案灵活,如RAG优化可自由发挥。学习大模型可参考系统路线:从系统设计、提示词工程到平台开发、知识库应用及微调等。资源包括书籍、报告、视频及开源教程,助力转型为AI时代的技术复合人才。(150字) 注:省略了推广链接与具体学习阶段细节,保留核心逻辑与建议。
2025-07-15 13:09:58
845
原创 技术详解:BERT的分词预处理、输入Embedding、中间编码与输出向量解析_bert分词
BERT是一种基于上下文的预训练语言模型,通过Transformer结构实现对文本的深度编码。其输入为字/词的原始向量,输出为融合全文语义的向量表示,可用于各类下游任务。输入处理包括分词、添加特殊标记(如[CLS]、[SEP])、填充等步骤,BERT最多支持512个字符。针对长文本和OOV问题,可采用截断、滑动窗口或扩充词表等方法解决。BERT的分词器包含BasicTokenizer、WordpieceTokenizer等模块,用于将文本分解为子词并进行ID转换。总体而言,BERT通过多层次语义建模,有效捕
2025-07-14 16:23:05
659
原创 【大模型项目实战】练完这些项目,天下没有再难倒你的大模型
大模型的应用潜力在于与传统业务结合创造智能服务,这需要深入理解业务逻辑和应用场景。通过练习大模型项目,可以积累从微调、分布式训练到RLHF等实战经验,掌握6B至65B模型的开发技术。《大模型项目实战》资料提供完整学习路径,包含丰富案例和免费资源,帮助开发者将理论转化为实际解决方案。多实践项目不仅能提升技术能力,更能挖掘大模型与各行业结合的创新可能性。
2025-07-14 16:18:09
419
原创 AI agent系统中的记忆系统如何开发?一文搞懂大模型的上下文机制
本文介绍了AI Agent系统中记忆系统的开发原理与实现方法。文章指出大模型本身不具备记忆能力,需要通过外挂记忆系统来存储和管理信息。记忆系统采用分层架构,分为短期记忆(存储当前对话)、中期记忆(整合主题信息)和长期记忆(持久化用户数据)。开发中需解决消息体组织、阈值管理和历史信息检索等问题,可采用截断法、摘要压缩法或RAG技术。文章还提供了大模型学习路线和资源,帮助开发者掌握AI应用开发技能。通过合理设计记忆系统,可以有效提升Agent的对话连贯性和个性化响应能力。
2025-07-09 13:15:49
672
原创 Hugging Face开源顶级模型:双模式推理+128K上下文,最强3B
Hugging Face开源30亿参数小模型SmolLM3,性能超越同类3B模型,支持6种语言和128K长文本处理。该模型采用双模式推理设计,开放了完整架构和训练细节,包括三阶段预训练策略(11.2万亿tokens数据)和创新的混合推理方法。通过分组查询注意力、NoPE技术等优化,在384块H100 GPU上训练24天完成。模型还进行了长上下文扩展和推理适应训练,最终通过APO对齐和模型合并技术保持性能。创始人评价其为3B领域的SOTA模型,适合研究和优化。配套提供了基础模型和推理指导模型下载。
2025-07-09 11:59:06
925
原创 2025最新最全【大模型学习路线规划】零基础入门到精通_大模型学习路径
AI大模型学习指南:从基础到实战 这份AI大模型学习资料系统梳理了LLM技术的知识体系,包含七个阶段的学习路径:从基础理论、核心技术到编程工具、实战项目,再到高级开发、私有化部署和前沿技术探索。内容涵盖Python编程、Transformer架构、提示工程、RAG技术等核心知识点,并提供了640套行业报告、视频教程和开源资源。学习者将掌握大模型全栈开发能力,包括微调训练、API应用开发、多模态处理等技能,适用于电商、物流、医疗等多个领域的AI解决方案开发。资料还包含商业化落地方案、面试题库等实用资源,助力开
2025-07-02 20:58:47
985
原创 用通俗易懂的方式讲解:一文详解大模型 RAG(检索增强生成)_rag 大模型
RAG(检索增强生成)技术结合大型语言模型与检索系统,通过外部知识库检索信息,提升生成内容的准确性和时效性,避免模型幻觉问题。模块化RAG采用分层结构(模块类型、功能模块、运算符),增强可扩展性和灵活性,支持多轮检索和结构化数据处理。索引模块的关键挑战包括内容表示不完整、相似性搜索不准确和引用轨迹模糊。块优化需平衡上下文与噪声,滑动窗口虽能增强语义转换,但存在精确度不足等局限。RAG并非替代传统知识库系统,而是作为补充提升自然语言处理效果。
2025-06-27 09:45:00
781
原创 【实战分享】构建企业级RAG(Retrieval-Augmented Generation)知识库的全面实践_企业级rag知识库
本文系统介绍了基于RAG技术的企业知识库构建方法。首先分析了知识库在企业知识管理中的价值,包括解决信息孤岛、提升检索效率等痛点。接着详细解析了RAG技术原理,涵盖文本预处理、文档切片策略、向量化处理等关键技术环节。重点阐述了Milvus向量数据库的选择依据及系统架构设计,并给出Python实现方案。最后提出7项优化方向:智能PDF切分、检索完整性提升、提示词优化、Text-to-SQL实现、多轮对话、智能报表和多智能体交互。附录包含6大核心模块的代码实现要点。该方案为企业构建智能知识管理系统提供了完整的技术
2025-06-27 09:45:00
789
原创 面试大模型工作必备--10道RAG面试题
摘要:本文分享10道RAG(检索增强生成)领域的面试题及答案,涵盖RAG与传统微调的区别、缓解模型幻觉的原理、检索技术、文档处理策略等核心知识点。文章还提供了AI大模型学习路线和资源包,包含640份行业报告、视频教程及开源项目等,帮助读者系统掌握LLM技术。资源可通过扫描二维码免费获取,适合希望入门或进阶AI大模型的开发者学习参考。(150字)
2025-06-27 09:30:00
998
原创 多模态大模型入门指南(非常详细)零基础入门到精通,收藏这一篇就够了_多模态大模型 入门
本文综述了多模态大语言模型(MM-LLMs)的研究进展。首先,将MM-LLMs架构分解为5个核心组件:模态编码器、输入投影器、语言模型骨干、输出投影器和模态生成器,详细分析了各模块的实现方案。其次,梳理了MM-LLMs的两阶段训练流程:多模态预训练和指令微调。研究比较了26种主流MM-LLMs在模型架构和训练数据规模上的差异,并评估了它们在18个视觉语言评测集上的表现,提炼出关键优化方法。最后,展望了未来发展的5个方向:增强模型能力、设计更严格的评测基准、轻量化部署、实现实体交互智能和持续指令优化。该研究系
2025-06-26 07:07:18
728
原创 2025千万别再自学AI大模型了(当心学废了),大模型零基础到精通,看这篇就够了!_智泊ai的大模型课程怎么样
当今科技飞速发展的时代,AI(人工智能)已经成为不可忽视的力量。2025年被许多人视为AI应用的爆发年,AI将如同电力一般融入我们生活的方方面面——从智能助手到各种跨平台应用。它们能够根据我们的语音指令完成点外卖、订机票甚至购买礼物等任务。AI不仅会改变我们与技术互动的方式,还将深刻影响个人之间的效率差距。那些率先拥抱AI工具的人将获得显著的优势,而忽视这一趋势的人可能会逐渐落后。尽管AI的重要性日益凸显,但选择自学AI大模型却并非最佳路径。
2025-06-26 07:03:42
918
原创 大模型RAG实战|构建知识库:文档和网页的加载、转换、索引与存储,零基础入门到精通,收藏这一篇就够了_从零开始使用rag打造知识库
《大模型RAG实战》系列文章将深入讲解如何构建实用的大模型检索增强生成系统,重点聚焦知识库管理、检索效果提升和本地模型部署等关键技术。文章详细介绍了知识库的三类数据来源(文件、网页、数据库)以及LlamaIndex框架处理数据的四个核心步骤:加载数据、转换数据、建立索引和存储数据。通过代码示例展示了如何加载本地文件、网页信息,并实现文本分割和去重功能。该系列最终将形成一套可运行的实用系统,帮助开发者构建高效的RAG问答系统。
2025-06-26 06:50:27
1065
原创 【保姆级教程】本地私有化RAG知识库搭建:基于Ollama+AnythingLLM的详细指南_anythingllm rag设置
RAG(检索增强生成)技术通过结合信息检索与语言模型,解决了大模型的知识局限、幻觉问题和数据安全问题。其发展经历了三个阶段:基础阶段(Naive RAG)实现检索与生成的简单结合;进阶阶段(Advanced RAG)优化检索策略和索引方法;模块化阶段(Modular RAG)提供灵活性更强的功能组合。RAG的工作原理是通过检索外部知识库获取相关信息,再指导语言模型生成更准确的答案,适用于问答系统、推荐系统等多个领域。
2025-06-26 06:46:16
959
原创 2025中国十大AI大模型:进展、应用案例与发展趋势,非常详细收藏我这一篇就够了!_国内大模型
2024年中国AI大模型发展迅猛,讯飞星火、文心一言、通义千问等十大模型在文本生成、多模态交互等领域表现突出,已深入医疗、金融、教育等行业应用。国内AI专利数量全球领先,但美国在顶级模型开发上仍占优势。未来趋势包括技术性能提升、多模态融合及行业深度应用,同时需关注伦理与法规。学习资源涵盖系统课程、行业报告及实战项目,助力开发者掌握大模型全栈技能。国内外对比显示,中国在商业化落地上快速推进,而GPT-4 Turbo等国际模型保持评测领先。
2025-06-24 19:54:08
1470
原创 全网爆火神书《从零构建大模型》终于有中文版的啦!LLM大模型神仙入门书籍教程分享!
威斯康星大学麦迪逊分校终身教授的《从零构建大模型》中文版正式发布,配套项目实战与代码同步开源。该书采用PyTorch框架,指导读者从零搭建大语言模型,无需高性能设备,普通笔记本电脑即可运行。全书分为六部分:大模型基础理论、文本数据处理、注意力机制编程、GPT模型实现、无监督预训练和模型微调。通过理论讲解与代码实践结合,完整揭示大模型的工作原理与实现细节。现提供免费PDF下载及配套学习资料,扫描文末二维码即可领取。
2025-06-24 19:51:05
546
原创 2025年各大主流AI大模型的核心特点和主要应用场景_2025ai大模型技术
当人类文明的数字神经网络以指数级速度延伸,2025年的AI大模型已不再是实验室中的技术标本,而是演变为重塑社会生产关系的“智能基座”。这一年,全球AI竞赛进入“深水区”——技术突破从单一性能的垂直攀登转向多模态融合的生态重构,商业博弈从参数军备竞赛升级为场景落地的价值深耕。 技术维度上,大模型正突破“语言理解”的单一边界,以视觉、听觉、触觉的多维感知能力,构建起虚实交融的交互界面。
2025-06-23 23:56:50
796
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人