[经验日记]tensorflow的一种广播机制

这篇博客探讨了在TensorFlow中如何利用广播机制进行矩阵运算。通过一个实例展示了如何将一个形状为(2,)的张量A与形状为(2,2,2)的张量B正确相乘,使得A中的每个元素能对应乘以B中的每个二维图像。通过使用tf.expand_dims两次扩展A的维度,使其与B匹配,从而实现按元素的乘法操作,满足了先验二分类的图像处理需求。

[经验日记]tensorflow的一种广播机制

问题:将shape=(2,)维的Tensor A和shape=(2,2,2)的Tensor B以某种方式相乘,这里它们的第一个维度2代表Batch_size, A可以理解为sigmoid输出, B为两张2x2的图像分割结果,要将A中的数分别对应乘上B中的图片(先验二分类)

A = tf.constant([1,2])
B = tf.constant([
    [
        [1,0],
        [0,1]
    ],
    
    [
        [1,1],
        [0,0]
    ]
])

A*B
直接A*B的结果是这样的,可以发现其实是A与B的后两维做乘法,不满足我们的需求

A = tf.expand_dims(A,axis=-1)
A = tf.expand_dims(A,axis=-1)

扩增维度后A*B
这样在A的后面扩增两维后,A的shape为(2,1,1), 这样A与B维度相同,且第一个维度都是2, A的后两维便广播成2x2与B的后两维匹配,这样就能让对应的数乘到对应的图片上。
(只扩增一次的话还是与第一次结果一样,只是最后两维相乘)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值