目录
整数在内存中的存储
在讲解操作符的时候,我们就讲过了下面的内容:
整数的2进制表示方法有三种,即 原码、反码和补码
有符号的整数,三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,最高位的一位是被当做符号位,剩余的都是数值位。
大小端字节序和字节序判断
什么是大小端
其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:
是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
为什么有大小端?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit 位,但是在C语言中除了8 bit的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大
于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short型 x,在内存中的地址为 0x0010,x 的值为 0x1122,那么
0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而
KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
练习1
写程序判断当前机器字节序
练习2
练习3
练习4
练习5
程序死循环了
练习6
浮点数在内存中的存储
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
十进制的5.0,写成二进制是101.0,相当于1.01x2^2那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是-101.0,相当于-1.01x2^2。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数(float),最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数(double),最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
浮点数存的过程
IEEE 754 对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤ M <2 ,也就是说,M 可以写成 1.xxxxxx的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1(常规情况)
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示士0,以及接近于0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示土无穷大(正负取决于符号位s)