【已解决】TypeError: __init__() got an unexpected keyword argument ‘min_impurity_split‘

本文介绍了如何在Python中使用sklearn的RandomForestClassifier构建随机森林模型,指定了基本参数如n_estimators=100,max_depth=5,min_samples_leaf=100。在遇到`min_impurity_split`未知参数错误后,通过查阅资料解决了问题,最终使代码正常运行。

建立随机森林模型

随机森林是若干决策树组成的集成模型,训练速度较快,性能也较好。

在此不加调优的指定随机森林的相关超参数防止过拟合:

  • 参数n_estimators:指定随机森林中决策树的数量为100;
  • 参数max_depth:指定决策树的最大深度为5;
  • 参数min_samples_leaf:指定决策树的叶子节点至少要包含100个样本。
clf = RandomForestClassifier(n_estimators = 100, max_depth = 5, min_samples_leaf = 100)
clf.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                       max_depth=5, max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=100, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=100,
                       n_jobs=None, oob_score=False, random_state=None,
                       verbose=0, warm_start=False)

报错:

Traceback (most r
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值