Restoration forWeakly Blurred and Strongly Noisy Images 阅读理解

       图像增强算法目前在拍摄方面越来越重要,图像模糊的原因很多,失焦模糊,运动模糊等,根据不要模糊的程度也出现了不同的图像增强算法,一个重要的相机设置-孔径大小,强烈地影响着图像的模糊和噪声问题,需要仔细调整。如果曝光时间是固定的,大光圈会增加信号到噪声比(SNR),同时减少场(DOF)的深度,从而增加不聚焦的模糊,导致消除了图像的高频成分。一个小光圈可以减轻模糊,但增加了噪音水平。噪音也可以通过使用更长的曝光时间来抑制;但是这可能会导致运动(不管是相机运动还是物体运动)模糊,这是更难去除的。与此同时,自动对焦系统和低光条件的精度有限,可能会在图像中增加额外的模糊和噪声。所以在真实的应用中,比如消费者数字成像,记录弱模糊和相对嘈杂的图像是很常见的(引用论文Restoration forWeakly Blurred and Strongly Noisy Images)。

       进行图像增强,一种思路就是增强高频细节,例如最简单的高反差,一种是主要对图像的边缘进行锐化,边缘的锐化不能是单纯的提高他的像素值,容易出现边缘过锐或者光晕现象,因此一般提高边缘梯度方法的横截面的斜度,见下图,将梯度方向 的垂直方法看作高斯分布,然后提高其陡峭度(Gradient Profile Prior and Its Applications in ImageSuper-Resolution and Enhancement)。

 但是我们在增强图像的同时不希望增加噪声,因此直接增加高频不是很好的方法。因此很多研究者考虑基于图像局部内容进行自适应细节增强。推荐下面这篇论文

Restoration forWeakly Blurred and Strongly Noisy Images

该论文 提出了一种自适应锐化算法,它可以对被轻度模糊和强烈噪声破坏的图像进行修复。大多数现有的自适应锐化算法由于锐化和去噪的内在矛盾,不能很好地处理强噪声。为了解决这个问题,我们提出了一种能够捕捉局部图像结构和锐度的算法,并据此进行调整,使其能够有效地将去噪和锐化结合在一起而不不会使得噪声放大或出现过锐的不好现象。它还使用来自亮度通道的结构信息来删除色度通道中的伪像。实验证明,与其他锐化方法相比,我们的方法可以在实际成像条件下产生较好的效果。

      提出一种称为几何局部自适应锐化(GLAS)的方法。这种方法考虑了局部图像结构,使其能够有效地将锐化和去噪结合在一起。然后,简要介绍了图像重建的转向内核(SK)回归技术,它能够捕捉局部图像结构,即使有轻微的模糊和强烈的噪声(大体是基于局部梯度矩阵的奇异值)。在SK的基础上,开发了一种用于弱模糊灰度图像恢复的GLAS内核的具体算法。最后,我们将这种方法扩展到彩色图像中,并使用了消除色度伪像的策略。

他们模拟了一个过程,它将一个理想的锐利的图像(用一个字典式的有序的向量表示)分解成观察到的模糊和噪声的数据g

      G = hf +n

G是生成的带有噪声,轻量模糊的低画质图像,f为原始理想的图像,h为一个模糊核矩阵,n为噪声。锐化方法的根本问题是他们寻求找到一个可以同时进行锐化和去噪的全局过滤器 S

   f’ = Sg = SHf + Sn

     在实践中经常出现的一个问题,部分是由于相机领域的深度有限,在空间中模糊的程度是不同的。因此,在全局的锐化方法中,一些已经处于焦点的区域可能会被过度磨尖,从而导致过锐或振铃。没有额外的技巧, 类似的问题可能会困扰提议的方法。如果本地区域已经处于焦点,那么一个固定的、不必要的高值q将会在边缘像素上产生超射。为了解决这个问题,我们接下来要根据局部图像内容的锐度来进行锐化参数q。因此作者简单的设计了一个惩罚函数,对于较高的区域进行抑制。但是作者选择的阈值时硬阈值。因此有文章对此进行改进:Improved restoration algorithm for weakly blurred and strongly noisy image。

 

 

### CRNet网络架构及其在图像修复和增强任务中的应用 CRNet是一种专为统一处理图像修复和增强任务而设计的深度神经网络结构[^1]。此网络旨在保留图像细节的同时执行多种类型的恢复操作,包括但不限于去噪、超分辨率重建以及色彩校正。 #### 网络组成要素 CRNet采用了多尺度特征提取模块(Multi-scale Feature Extraction Module),该模块允许模型捕捉不同层次的空间信息。通过引入残差连接机制(residual connections),使得深层网络更容易训练,并有助于保持输入信号的关键特性不受损失。 为了实现更精细级别的控制,CRNet还融入了注意力机制(Attention Mechanism)。这一部分的设计灵感来源于人类视觉系统的运作原理——即专注于某些特定区域而非均匀对待整个视野范围内的所有像素点。因此,在面对复杂场景时,算法能够更加智能地区分重要性和不重要的内容,从而提高最终输出质量。 ```python import torch.nn as nn class MultiScaleFeatureExtractor(nn.Module): def __init__(self, in_channels=3): super().__init__() self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, padding=1) self.res_blocks = nn.Sequential(*[ ResidualBlock() for _ in range(8)]) # 使用多个残差块 def forward(self, x): out = F.relu(self.conv1(x)) return self.res_blocks(out) class AttentionModule(nn.Module): """简化版注意力模块""" pass class CRNet(nn.Module): def __init__(self): super(CRNet, self).__init__() self.feature_extractor = MultiScaleFeatureExtractor() self.attention_module = AttentionModule() def forward(self, input_image): features = self.feature_extractor(input_image) attended_features = self.attention_module(features) output = ... # 进一步处理得到最终结果 return output ``` 值得注意的是,尽管上述描述主要集中在CRNet对于静态图片的应用上,但其设计理念同样适用于动态影像序列的实时编辑与优化过程。此外,由于CRNet具备良好的泛化能力,所以在实际部署过程中往往不需要针对每种具体的退化模式都重新调整参数设置即可获得满意的效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值