系列文章目录
【时间序列篇】基于LSTM的序列分类-Pytorch实现 part1 案例复现
【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用
本篇文章是对已有一篇文章的整理归纳,并对文章中提及的模型用Pytorch实现。
文章目录
前言
序列,可以是采样得到的信号样本,也可以是传感器数据。
对于序列分类任务,常用的思路有两种:
1、原理统计相关,分解序列的相关性质研究规律(人工设计特征,再分类)
2、数据挖掘思路,机器学习做特征工程,模型拟合(自动学习特征,再分类)
-
人工设计特征方法:
基于序列距离:计算距离进行分类(类别模板or聚类)
基于统计特征:时序特征提取 (均值,方差,差分)再分类 -
自动学习特征方法:
深度学习端到端(RNN, LSTM)
本文通过LSTM来实现对序列信号的分类。
主要思想和代码框架来自参考文献[1]
一、任务问题和数据集
1 任务问题
人体运动估计:
传感器生成高频数据,对不同状态下采集的数据进行分类,可以识别其范围内对象的移动。通过设置多个传感器并对信号进行采样分析,可以识别物体的运动方向。
“ 室内用户运动预测 ”问题:
在该任务中,多个运动传感器被放置在不同房间中,目标基于运动传感器捕获的数据来识别个体是否已经移动穿过房间。
两个房间有四个运动传感器(A1,A2,A3,A4)。
下图说明了传感器在每个房间中的位置。
一个人可以沿着上图中所示的六个预定义路径中的任何一个移动。每个路径都生成一个 RSS 测量的轨迹样本,从轨迹的开始一直到标记点,在图中表示为 M。标记 M 对于所有运动都是相同的,因此不能仅仅根据在 M 处收集的 RSS 值来区分不同的路径。
该图还显示了所考虑的用户轨迹类型的简化说明,直线路径导致于空间变化,曲线路径导致空间不变。有在房间内移动和在房间之间移动两种类别。
2 数据集
文件 | 含义 |
---|---|
RSS_Position_dataset/dataset | 样本数据 |
RSS_Position_dataset/groups | 标签文件和组别文件(划分数据集) |
RSS_Position_dataset/MovementAAL.jpg | 上面的示意图 |
数据集最重要的有316个csv文件:
- 【dataset 文件夹】
314 个MovementAAL csv文件,是序列样本,每个文件都包含与输入 RSS 数据的一个序列数据(每个文件记录一个用户轨迹)。该数据集包含314个序列数据(样本csv文件)。
1个 MovementAAL_target.csv 文件,是每个MovementAAL文件对应的标签(类别)。每一个样本对应的类别,表明用户的轨迹是否会导致空间变化(例如房间的变化)。特别地,标签为+1与位置变化相关联,而标签为 -1与位置保留相关联。 - 【groups 文件夹】
MovementAAL_DatasetGroup.csv文件,用于划分数据集
3 数据集读取并展示
import pandas as pd
# ----------------------------------------------------#
# 路径指定,文件读取
# ----------------------------------------------------#
df1 = pd.read_csv("DATA/RSS_Position_dataset/dataset/MovementAAL_RSS_1.csv")
df2 = pd.read_csv("DATA/RSS_Position_dataset/dataset/MovementAAL_RSS_2.csv")
df1.head() # 返回一个新的DataFrame或Series对象,默认返回前5行。
df1.shape # 返回文件的size,不同文件的len(行数)不同
二、模型实现
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
1 数据导入
'''
/****************************************************/
导入数据集
/****************************************************/
'''
# ----------------------------------------------------#
# 数据集样本
# ----------------------------------------------------#
path = "DATA/RSS_Position_dataset/dataset/MovementAAL_RSS_"
sequences = list()
for i in range(1, 315): # 315为样本数
file_path = path + str(i) + '.csv'
df = pd.read_csv(file_path, header=0)
values = df.values
sequences.append(values)
# ----------------------------------------------------#
# 数据集标签
# ----------------------------------------------------#
targets = pd.read_csv('DATA/RSS_Position_dataset/dataset/MovementAAL_target.csv')
targets = targets.values[:, 1]
# ----------------------------------------------------#
# 数据集划分
# ----------------------------------------------------#
groups = pd.read_csv('DATA/RSS_Position_dataset/groups/MovementAAL_DatasetGroup.csv', header=0)
groups = groups