系列文章目录
【时间序列篇】基于LSTM的序列分类-Pytorch实现 part1 案例复现
【时间序列篇】基于LSTM的序列分类-Pytorch实现 part2 自有数据集构建
【时间序列篇】基于LSTM的序列分类-Pytorch实现 part3 化为己用
在一个人体姿态估计的任务中,需要用深度学习模型来进行序列分类。
时间花费最多的是在数据集的处理上。
这一节主要内容就是对数据集的处理。
文章目录
前言
类似于part1的工作,这部分对数据集进行了分析处理
一、任务问题和数据采集
1 任务问题
人体姿态估计:
在人体左右腿放置加速度传感器,分别采集横滚角和俯仰角。传感器生成高频数据,对不同状态下采集的数据进行分类,可以识别人体姿态。
2 原始数据采集
采集6类动作姿态,每种动作记录10次过程量。
蹲姿到站立(右蹲) ------ 1
蹲姿到站立(左蹲)----- 2
行进 ----------------------- 3
原地踏步 ----------------- 4
站立到蹲姿(右蹲) ------ 5
站立到蹲姿(左蹲) ------ 6
data_merge 文件夹下存放采集到的原始数据。
data_merge_1.xlsx
data_merge_2.xlsx
data_merge_3.xlsx
data_merge_4.xlsx
data_merge_5.xlsx
data_merge_6.xlsx
每一个 xlsx 文件对应一类动作姿态,保存有10组实验数据。
以 data_merge_1.xlsx 文件内容为例:
二、数据处理和生成样本
1 data_merge2single.py
将每类动作姿态的data_merge_x.xlsx文件分解,每一组实验单独保存在一个文件中。
"""
@file name:data_merge2single.py
@desc: 得到每次实验的单独数据
"""
import os
import pandas as pd
'''
/****************************************************/
路径指定
/****************************************************/
'''
# ----------------------------------------------------#
# 数据路径
# ----------------------------------------------------#
ROOT_path = "DATA/RT_Position_dataset"
merge_path = os.path.join(ROOT_path, "data_merge")
path_list = os.listdir(merge_path)
# print(path_list)
# ['data_merge_1.xlsx', 'data_merge_2.xlsx', 'data_merge_3.xlsx', 'data_merge_4.xlsx', 'data_merge_5.xlsx', 'data_merge_6.xlsx', '~$data_merge_1.xlsx']
single_path = os.path.join(ROOT_path, "data_single_test")
if not os.path.exists(single_path):
os.mkdir(single_path)
# ----------------------------------------------------#
# 对每个文件进行读取
# ----------------------------------------------------#
for i in range(0, len(path_list)): # 遍历 data_merge_x.xlsx 文件
file_path = os.path.join(merge_path, path_list[i])
save_path = os.path.join(single_path, str(i + 1))
if not os.path.exists(save_path):
os.makedirs(save_path)
print("----------------------------------------------------")
print(file_path)
# 使用pandas读取Excel文件
df = pd.read_excel(file_path)
# 计算总列数
total_columns = df.shape[1]
index = 0
# 每四列分割并保存(在实验中,分别采集左右腿的俯仰角和横滚角,特征数目为4)
for start_col in range(0, total_columns, 4):
index += 1
# 确定每个文件的列范围
end_col = min(start_col + 4, total_columns)
# 提取四列数据
sub_df = df.iloc[:, start_col:end_col]
# 保存到新的xlsx文件
sub_df.to_csv(f'{
save_path}/{
str(i + 1)}_{
index}.csv', index=False)
data_singe_test 文件夹下存放每组实验的单独数据。
2 data_plot.py
分析每个类别下的每一组实验,不是所有数据都有用,得到有效数据区间
"""
@file name:data_plot.py
@desc: 绘制每组实验的数据图,分析有效数据区间
"""
import pandas as pd
import matplotlib.pyplot as plt
# ----------------------------------------------------#
# 数据路径
# ----------------------------------------------------#
file_path = "DATA/RT_Position_dataset/data_single_test/2/2_5.csv"
df = pd.read_csv(file_path, header=2) # 使用pandas读取Excel文件
# 跳过前两行数据
# df = df.iloc[2:]
# 绘制波形图
plt.figure(figsize=(12, 8))
for i, column in