遥感影像识别进展2022/5/5

本文探讨了图像标注过程中训练集的选择策略,包括按标签比例选取、全量使用、图像聚类以及调整数据集分辨率。针对背景标注遗漏的问题,提出了通过特征提取和离群点检测来评估原始标签质量。然而,这种方法无法检测未标注的背景内容。实验结果显示了不同策略的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 选择部分标签用作训练集

在这里插入图片描述
把当前框内标签的比例作为选择的指标。

2. 选择全部标签用作训练集

在这里插入图片描述

3. 考虑图像聚类来选择标签

在这里插入图片描述
聚类效果太差了,没采用。

4. 降低数据集的分辨率来训练

考虑之前是否是因为分辨率过高,导致特征提取不够好。

5. 实验结果

在这里插入图片描述

6. 利用特征提取判断标签质量

在这里插入图片描述
这里只列举了一张图像的各个类别。找出所有图像各个类别的共性(特征提取),然后通过离群点检测来判断原始标签是否标注正确。

问题:这样只能判断原始标签里哪些正确,并不能判断背景中有哪些没标注(训练中主要以滑动窗口的形式裁切原始图像,因此会使得背景中的内容也参与训练。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值