Python爬取招标信息并生成可视化分析报告

引言

在当今的商业环境中,招标信息是企业获取商机的重要来源之一。对于投标企业而言,及时获取和分析招标信息至关重要。传统的人工收集方式效率低下,难以应对海量数据。本文将介绍如何使用Python技术栈构建一个完整的招标信息采集与分析系统,包括数据爬取、存储、清洗和可视化分析全流程。

一、准备工作

在开始之前,我们需要安装一些必要的 Python 库。这些库包括用于网络请求的 <font style="color:rgba(0, 0, 0, 0.9);background-color:rgba(0, 0, 0, 0.03);">requests</font>,用于解析 HTML 的 <font style="color:rgba(0, 0, 0, 0.9);background-color:rgba(0, 0, 0, 0.03);">BeautifulSoup</font>,用于数据处理的 <font style="color:rgba(0, 0, 0, 0.9);background-color:rgba(0, 0, 0, 0.03);">pandas</font>,以及用于可视化的 <font style="color:rgba(0, 0, 0, 0.9);background-color:rgba(0, 0, 0, 0.03);">matplotlib</font><font style="color:rgba(0, 0, 0, 0.9);background-color:rgba(0, 0, 0, 0.03);">seaborn</font>

二、爬取招标信息

招标信息通常存储在一些专门的招标网站上,例如中国招标网等。这些网站的页面结构可能会有所不同,但基本原理是相似的。我们需要分析网页的结构,找到招标信息所在的标签和属性,然后编写爬虫代码来提取这些信息。

以下是一个简单的示例代码,用于爬取某个招标网站的招标信息:

import requests
from bs4 import BeautifulSoup
import pandas as pd

# 代理配置
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"

# 定义爬虫函数
def crawl_tender_info(url):
    # 设置代理
    proxyMeta = f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}"
    proxies = {
        "http": proxyMeta,
        "https": proxyMeta,
    }
    
    # 设置请求头
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
    }
    
    try:
        # 发送 HTTP 请求(带代理)
        response = requests.get(url, proxies=proxies, headers=headers, timeout=10)
        
        # 检查请求是否成功
        if response.status_code == 200:
            # 解析 HTML 内容
            soup = BeautifulSoup(response.text, 'html.parser')
            # 找到招标信息所在的标签
            tender_list = soup.find_all('div', class_='tender-item')
            # 初始化一个列表来存储招标信息
            tender_info = []
            # 遍历招标信息列表
            for tender in tender_list:
                # 提取招标信息
                title = tender.find('h2').text.strip()
                date = tender.find('span', class_='date').text.strip()
                link = tender.find('a')['href']
                # 将招标信息存储为字典
                tender_info.append({
                    'title': title,
                    'date': date,
                    'link': link
                })
            return tender_info
        else:
            print(f"请求失败,状态码:{response.status_code}")
            return []
            
    except requests.exceptions.RequestException as e:
        print(f"请求发生异常: {e}")
        return []

# 调用爬虫函数
url = 'https://example.com/tenders'  # 替换为实际的招标网站 URL
tender_info = crawl_tender_info(url)

# 将招标信息存储为 DataFrame
if tender_info:
    df = pd.DataFrame(tender_info)
    print(df)
else:
    print("未能获取招标信息")

三、数据清洗与预处理

爬取到的招标信息可能存在一些问题,例如重复数据、缺失值或格式不一致等。我们需要对数据进行清洗和预处理,以便后续的分析。

以下是一些常见的数据清洗和预处理步骤:

# 删除重复数据
df.drop_duplicates(inplace=True)

# 处理缺失值
df.dropna(inplace=True)

# 转换日期格式
df['date'] = pd.to_datetime(df['date'])

# 对招标信息进行分类
# 假设我们根据标题中的关键词进行分类
df['category'] = df['title'].apply(lambda x: '工程类' if '工程' in x else '其他')

print(df)

四、可视化分析

数据清洗和预处理完成后,我们可以使用可视化工具对招标信息进行分析。可视化可以帮助我们更直观地了解数据的分布和趋势。

以下是一些常见的可视化分析方法:

import matplotlib.pyplot as plt
import seaborn as sns

# 设置中文显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 招标信息数量随时间的变化趋势
plt.figure(figsize=(10, 6))
sns.countplot(x='date', data=df)
plt.title('招标信息数量随时间的变化趋势')
plt.xlabel('日期')
plt.ylabel('数量')
plt.xticks(rotation=45)
plt.show()

# 不同类别招标信息的数量分布
plt.figure(figsize=(8, 6))
sns.countplot(x='category', data=df)
plt.title('不同类别招标信息的数量分布')
plt.xlabel('类别')
plt.ylabel('数量')
plt.show()

# 招标信息的地区分布(假设我们有地区信息)
# plt.figure(figsize=(12, 8))
# sns.countplot(y='region', data=df)
# plt.title('招标信息的地区分布')
# plt.xlabel('数量')
# plt.ylabel('地区')
# plt.show()

五、生成可视化分析报告

最后,我们可以将可视化分析的结果整合成一个报告,以便向他人展示。报告可以包括文字描述、图表和结论等内容。

以下是一个简单的报告示例:

# 生成报告
report = """
# 招标信息分析报告
## 一、招标信息数量随时间的变化趋势
![数量随时间变化](数量随时间变化.png)

## 二、不同类别招标信息的数量分布
![类别数量分布](类别数量分布.png)

## 三、招标信息的地区分布
![地区分布](地区分布.png)
"""

# 将报告保存为 Markdown 文件
with open('tender_analysis_report.md', 'w', encoding='utf-8') as f:
    f.write(report)

总结

通过以上步骤,我们成功地使用 Python 爬取了招标信息,并进行了可视化分析。这个过程不仅可以帮助我们快速获取大量招标信息,还可以通过可视化分析直观地了解数据的分布和趋势。当然,实际应用中招标网站的结构可能会更加复杂,可能需要进一步的分析和优化。此外,我们还可以根据需求进一步扩展分析内容,例如对招标金额进行分析、对招标单位进行分析等,以满足不同的业务需求。总之,Python 爬虫和数据可视化技术为我们提供了强大的工具,可以帮助我们更好地理解和利用招标信息,从而为企业决策提供有力支持。

<think>好的,用户想要找一个能够快速搭建招投标数据分析任务流程的开源库。首先,我需要理解用户的具体需求。招投标数据分析可能涉及数据爬取、清洗、存储、分析可视化等步骤。用户希望有一个现成的库来简化这些流程,可能需要整合多个工具。 接下来,我应该考虑有哪些开源库或框架适合这些任务。根据用户提供的引用,特别是引用[3]中提到的Python爬虫和数据分析系统,可能Scrapy是一个合适的选择,用于数据爬取。此外,Pandas和NumPy是处理数据分析的常用库。对于任务流程的管理,可能需要工作流引擎,比如Apache Airflow或Luigi。 另外,引用[2]和[4]提到了Django和Spring Boot,这些是后端框架,可能用于构建管理系统。但用户的需求更偏向数据分析流程的搭建,所以可能更关注数据处理方面的库。比如,使用Scrapy爬取招投标数据,然后用Pandas进行清洗和分析,再用Matplotlib或Seaborn可视化。任务流程可以用Airflow来编排,这样整个流程可以自动化。 还需要考虑数据存储,可能涉及MySQL(如引用[2]提到的)或PostgreSQL,以及MongoDB处理非结构化数据。如果用户需要快速搭建,可能需要一个整合的解决方案,比如基于Python的库,因为Python在数据科学领域有丰富的生态系统。 另外,用户提到的“快速搭建”可能希望有现成的模块或模板,减少开发时间。这时候可以推荐使用Jupyter Notebook进行快速原型设计,或者使用Prefect这样的工作流管理库,它比Airflow更轻量,适合快速部署。 还要注意用户是否有技术栈偏好,比如Python或Java。根据引用[3]和[4],用户可能对Python更熟悉,所以优先推荐Python相关的库。比如,Scrapy用于爬虫,Pandas用于数据处理,FastAPI或Django搭建API,Airflow或Prefect管理任务流程,Superset或Plotly进行可视化。 可能需要验证这些库是否能够协同工作,比如Scrapy爬取的数据存入MySQL,然后Pandas读取进行分析,再用Airflow调度整个流程。同时,考虑是否有现成的开源项目整合了这些工具,比如引用[3]中的系统可能已经部分实现了类似功能,用户可以参考其结构。 最后,总结推荐几个关键库,说明它们的用途和组合方式,帮助用户快速搭建流程。同时,根据用户提供的引用,可能需要结合招投标系统的具体需求,比如数据透明度和流程跟踪,确保推荐的库能够支持这些功能。</think>### 推荐方案 针对招投标数据分析任务流程的快速搭建,推荐以下开源库和技术组合,覆盖数据采集、处理、分析可视化全流程: --- #### 1. **数据采集层** - **Scrapy**(Python) 用于快速构建招投标网站数据爬虫,支持异步请求、去重与结构化存储。 ```python # 示例:爬取招标公告 import scrapy class BidSpider(scrapy.Spider): name = 'bid_spider' start_urls = ['http://example-bid-site.com'] def parse(self, response): for item in response.css('div.bid-item'): yield { 'title': item.css('h2::text').get(), 'publish_date': item.css('.date::text').get() } ``` 引用[3]中提到的爬虫框架可参考此实现。 --- #### 2. **数据处理与分析** - **Pandas + NumPy**(Python) 提供数据清洗、转换与分析能力,例如处理招投标时间序列数据: ```python import pandas as pd # 读取爬取招投标数据 df = pd.read_csv('bids.csv') # 分析招标公告频率 df['publish_date'] = pd.to_datetime(df['publish_date']) monthly_counts = df.resample('M', on='publish_date').size() ``` - **Apache Airflow** 用于编排复杂的数据处理任务流,支持定时调度与依赖管理: ```python # 定义DAG任务流(示例) from airflow import DAG from airflow.operators.python_operator import PythonOperator dag = DAG('bid_analysis', schedule_interval='@daily') task1 = PythonOperator(task_id='crawl_data', python_callable=run_spider, dag=dag) task2 = PythonOperator(task_id='analyze_data', python_callable=run_analysis, dag=dag) task1 >> task2 # 设置任务依赖 ``` --- #### 3. **可视化与交互** - **Metabase / Superset** 开源BI工具,支持快速生成招投标数据看板(如中标金额分布、投标企业排名)。 ```sql -- Superset中查询招标金额TOP10 SELECT bidder, SUM(amount) as total FROM bids GROUP BY bidder ORDER BY total DESC LIMIT 10; ``` --- #### 4. **集成开发框架** - **Django + Django REST Framework** 若需构建招投标管理系统(如引用[2]),可快速实现数据接口与权限控制: ```python # models.py定义招标项目 from django.db import models class BidProject(models.Model): title = models.CharField(max_length=200) budget = models.DecimalField(max_digits=10, decimal_places=2) deadline = models.DateField() ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值