2021.03.03生命之树

这篇博客介绍了如何使用树形动态规划解决寻找具有最大权值的子树问题。通过定义状态dp[i]表示以节点i为根的子树的权值和,利用状态转移方程dp[u]=val[u]+sum(dp[child_i]),其中child_i是节点u的子节点,实现了从叶子节点到根节点的遍历,最终得到最大权值的子树。代码中展示了具体的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021.03.03生命之树

题目描述

给定一棵树,每个节点有一个权值,求权值和最大的子树。

思路

树形dp
定义状态:dp[i]:第i个结点为根的树的权值和。
状态转移方程:dp[i] = sum(dp[child_i]),其中dp[child_i]都大于零

代码

    class Solution{
        boolean[] vis=new boolean[100005];
        ArrayList<Integer> rel[];
        int[] dp = new int[100005];
        int[] val = new int[100005];
        int n;
        int res=Integer.MIN_VALUE;
        void dfs(int u) {
            dp[u]=val[u];
            vis[u]=true;
            for(int i = 0; i < rel[u].size(); i++) {
                int child=rel[u].get(i);
                if(!vis[child]) {
                    dfs(child);
                    if(dp[child]>0) {
                        dp[u]+=dp[child];
                    }
                }
            }
            res=Math.max(res, dp[u]);
        }
        @SuppressWarnings({ "unchecked", "resource" })
        void test() {
            rel=new ArrayList[100005];
            rel[0]=new ArrayList<Integer>();
            Scanner cin = new Scanner(System.in);
            n = cin.nextInt();
            for(int i = 1; i <= n; i++) {
                val[i]=cin.nextInt();
                rel[i]=new ArrayList<Integer>();
            }
            for(int i = 1; i <=n-1; i++) {
                int u = cin.nextInt();
                int v = cin.nextInt();
                rel[u].add(v);
                rel[v].add(u);
            }
            dfs(1);
            System.out.println(res);
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值