2021.03.18编辑距离
(题目来源:https://leetcode-cn.com/problems/edit-distance/ )
题目描述
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
思路
【TLE】错误思路:dfs
void dfs(int i, int j, int cnt) {
if(i<n1&&j==n2) {
cnt+=n1-i;
ans = Math.min(ans, cnt);
return;
}
if(i==n1&&j<n2) {
cnt+=n2-j;
ans = Math.min(ans, cnt);
return;
}
if(i==n1&&j==n2) {
ans = Math.min(ans, cnt);
return;
}
//如果相等,则不变
//System.out.println(i+" "+j);
if(s1[i]==s2[j]) {
dfs(i+1,j+1,cnt);
}else {
//如果不等,可以考虑插入/删除/替换
//插入
dfs(i,j+1,cnt+1);
//删除
dfs(i+1,j,cnt+1);
//替换
dfs(i+1,j+1,cnt+1);
}
}
正确思路:动态规划
1.定义状态:dp[i][j]指的是当操作:s1中下标为i的元素 和 s2中下标为j的元素 时已经花的步数。(还未完成操作)
2.状态转移方程:(2021.05.18更新)
对于dp[i][j]:什么样的先决条件可以使我们处理到 s1中下标为i 和 s2中下标为j的两个元素呢?
答:
A) 当s1[i-1] == s2[j-1]时,不需要任何操作,自然过渡到(i,j)状态,即dp[i][j] = dp[i-1][j-1]
B) 通过(i-1,j)状态加上一步删除操作。即dp[i][j] = dp[i-1][j] + 1. // 注意,为了从(i-1,j) --> (i,j),尽管s1[i-1] == s2[j]我们还是要通过一步删除操作。
C) 通过(i,j-1)状态加上一步插入操作。即dp[i][j] = dp[i][j-1] + 1.
D) 通过(i-1,j-1)状态加入一步修改操作。即dp[i][j] = dp[i-1][j-1]+1.
代码
public int minDistance(String word1, String word2) {
char[] chs1 = word1.toCharArray();
char[] chs2 = word2.toCharArray();
int m = chs1.length, n = chs2.length;
//定义状态:dp[i][j]:当对 word1的第i个字符 和 word2的第j个字符 进行操作时
//已经完成的操作数。 所以dp[0][0] == 0
int[][] dp = new int[m+1][n+1];
// chs1上各个元素和chs2[0]进行比较时,疯狂删除
for(int i = 1; i <= m; i++) dp[i][0] = dp[i-1][0]+1;
// chs1[0]上各个元素和chs2上各个元素比较,疯狂插入
for(int j = 1; j <= n; j++) dp[0][j] = dp[0][j-1]+1;
// 所以,一直要到dp[m][n]才算转换完成
for(int i = 1; i <= m; i++) {
for(int j = 1; j <= n; j++) {
if(chs1[i-1] == chs2[j-1]) dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = Math.min(Math.min(dp[i-1][j-1], dp[i-1][j]), dp[i][j-1])+1;
}
}
return dp[m][n];
}