2021.03.18编辑距离

本文解析了如何使用动态规划解决LeetCode编辑距离问题,介绍了状态定义、转移方程,并提供了代码示例。核心思路是通过比较字符,计算插入、删除和替换操作的最小代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021.03.18编辑距离

(题目来源:https://leetcode-cn.com/problems/edit-distance/ )

题目描述

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

思路

【TLE】错误思路:dfs

    void dfs(int i, int j, int cnt) {
    	if(i<n1&&j==n2) {
    		cnt+=n1-i;
    		ans = Math.min(ans, cnt);
    		return;
    	}
    	if(i==n1&&j<n2) {
    		cnt+=n2-j;
    		ans = Math.min(ans, cnt);
    		return;
    	}
    	if(i==n1&&j==n2) {
    		ans = Math.min(ans, cnt);
    		return;
    	}
    	//如果相等,则不变
        //System.out.println(i+" "+j);
    	if(s1[i]==s2[j]) {
    		dfs(i+1,j+1,cnt);
    	}else {
    		//如果不等,可以考虑插入/删除/替换
    		//插入
    		dfs(i,j+1,cnt+1);
    		//删除
    		dfs(i+1,j,cnt+1);
    		//替换
    		dfs(i+1,j+1,cnt+1);
    	}
    }

正确思路:动态规划

1.定义状态:dp[i][j]指的是当操作:s1中下标为i的元素 和 s2中下标为j的元素 时已经花的步数。(还未完成操作)

2.状态转移方程:(2021.05.18更新)
对于dp[i][j]:什么样的先决条件可以使我们处理到 s1中下标为i 和 s2中下标为j的两个元素呢?
答:
A) 当s1[i-1] == s2[j-1]时,不需要任何操作,自然过渡到(i,j)状态,即dp[i][j] = dp[i-1][j-1]
B) 通过(i-1,j)状态加上一步删除操作。即dp[i][j] = dp[i-1][j] + 1. // 注意,为了从(i-1,j) --> (i,j),尽管s1[i-1] == s2[j]我们还是要通过一步删除操作。
C) 通过(i,j-1)状态加上一步插入操作。即dp[i][j] = dp[i][j-1] + 1.
D) 通过(i-1,j-1)状态加入一步修改操作。即dp[i][j] = dp[i-1][j-1]+1.

代码

 	public int minDistance(String word1, String word2) {
		char[] chs1 = word1.toCharArray();
		char[] chs2 = word2.toCharArray();
		int m = chs1.length, n = chs2.length;
		//定义状态:dp[i][j]:当对 word1的第i个字符 和 word2的第j个字符 进行操作时
		//已经完成的操作数。 所以dp[0][0] == 0
		int[][] dp = new int[m+1][n+1];
		// chs1上各个元素和chs2[0]进行比较时,疯狂删除
		for(int i = 1; i <= m; i++) dp[i][0] = dp[i-1][0]+1;
		// chs1[0]上各个元素和chs2上各个元素比较,疯狂插入
		for(int j = 1; j <= n; j++) dp[0][j] = dp[0][j-1]+1;
		// 所以,一直要到dp[m][n]才算转换完成
		for(int i = 1; i <= m; i++) {
			for(int j = 1; j <= n; j++) {
				if(chs1[i-1] == chs2[j-1]) dp[i][j] = dp[i-1][j-1];
				else 
					dp[i][j] = Math.min(Math.min(dp[i-1][j-1], dp[i-1][j]), dp[i][j-1])+1;
			}
		}
		return dp[m][n];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值