树上启发式合并CF600E

本文深入解析了树链剖分与DsuOnTree算法的原理及实现,详细介绍了如何通过树链剖分进行重儿子的处理,以及DsuOnTree算法在树上启发式合并的应用。文章通过具体的代码示例,展示了如何利用这两种算法解决树形结构上的信息统计问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <bits/stdc++.h>

using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define p_queue priority_queue

ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b) {
    return a / gcd(a, b) * b;
}
ll n , col[100005];
int head[100005] , cnt;
struct e{
    int t, next;
}edge[200005];
ll size[100005] , son[100005], fa[100005];
ll flag, sum , maxc ,ans[100005], tot[100005];
void add(int f , int t)
{
    edge[cnt].t = t;
    edge[cnt].next = head[f];
    head[f] = cnt ++;
}
void dfs(int root)
{
    size[root] = 1;
    for(int i = head[root] ; i != -1 ; i = edge[i].next)
    {
        int v = edge[i].t;
        if(v != fa[root])
        {
            fa[v] = root;
            dfs(v);
            size[root] += size[v];
            if(size[v] > size[son[root]])
                son[root] = v;
        }
    }
}
void count(int root, int val)
{
    tot[col[root]] += val;
    if(tot[col[root]] > maxc)
    {
        maxc = tot[col[root]];
        sum = col[root];
    }
    else if(tot[col[root]] == maxc)
        sum += col[root];
    //除了重儿子子树所有轻儿子子树全部重新统计
    for(int i = head[root] ; i != -1 ; i = edge[i].next)
    {
        int v = edge[i].t;
        if(v == fa[root] || v == flag) continue;
        count(v,val);
    }
}
void dsu(int root, int keep)
{
    //处理当前结点的所有轻儿子构成的子树
    for(int i = head[root] ; i != -1 ; i = edge[i].next)
    {
        int v = edge[i].t;
        if(v == fa[root] || v == son[root]) continue;
        dsu(v,0); //keep == 0 ,不保留轻儿子子树贡献
    }
    //如果存在重儿子,则计算重儿子贡献,并且保留
    if(son[root])
    {
        dsu(son[root],1);
        flag = son[root];
    }
    //统计该结点的整体信息
    count(root,1);
    flag = 0;
    ans[root] = sum;
    if(!keep)
    {
        //删除贡献
        count(root,-1);
        sum = maxc = 0;
    }
}
int main(void)
{
    mem(head,-1);
    cin>>n;
    for(int i = 1; i <= n ; i ++)
        cin>>col[i];
    for(int i = 1 ; i < n ; i ++)
    {
        int u , v;
        cin>>u>>v;
        add(u,v);
        add(v,u);
    }
    dfs(1);//简单的树链剖分一阶段处理出重儿子
    dsu(1,0); //树上启发式合并
    for(int i = 1 ; i <= n ; i ++)
        cout<<ans[i]<<" ";
    cout<<endl;
}

因为每一个结点最多只需要遍历LogN+1次 所以 整体复杂度为N*(LogN+1),因为某结点到达根节点最多存在LogN次轻边,自身统计一次,每存在一条轻边就意味着要遍历一次轻边链接的子树的所有的结点,重子树的结点只用遍历一次

以上是旧版本的

 

新版本Dsu On Tree

//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)

template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;

ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b) {
    return a / gcd(a, b) * b;
}
const int N = 1e5 + 5;
int n, maxCnt;
int c[N], siz[N], son[N], vis[N], cnt[N];
ll ans[N], sum;
vector <int> edge[N];
void dfs1 (int u, int fa)
{
    siz[u] = 1;
    for (auto v : edge[u])
    {
        if (v != fa)
        {
            dfs1 (v, u);
            siz[u] += siz[v];
            if (siz[v] > siz[son[u]])
                son[u] = v;
        }
    }
}
void count (int u , int fa, int k)
{
    cnt[c[u]] += k;
    if (k > 0)
    {
        if (cnt[c[u]] > maxCnt) sum = c[u] , maxCnt = cnt[c[u]];
        else if (cnt[c[u]] == maxCnt) sum += c[u];
    }
    for (auto v : edge[u])
    {
        if (v != fa && !vis[v])
            count(v , u , k);
    }
}
void dfs2 (int u , int fa , int opt)
{
    for (auto v : edge[u])
        if (v != fa && v != son[u])
            dfs2 (v , u , 0);
    if (son[u])
    {
        dfs2 (son[u], u, 1);
        vis[son[u]] = 1;
    }
    count (u , fa, 1);
    ans[u] = sum;
    if (son[u]) vis[son[u]] = 0;
    if (!opt) count (u , fa , -1) , sum = maxCnt = 0;

}
int main()
{
    read (n);
    for (int i = 1 ; i <= n ; i ++)
        read (c[i]);
    for (int i = 1 ; i < n  ; i ++)
    {
        int u , v;
        read (u , v);
        edge[u].pb(v);
        edge[v].pb(u);
    }
    dfs1 (1, 0);
    dfs2 (1 , 0 , 1);
    for (int i = 1 ; i <= n ; i ++)
        cout << ans[i] << ' ';
    cout << endl;
}

线段树合并+动态开点

//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)

template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;

ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a % b);
}

ll lcm(ll a, ll b) {
    return a / gcd(a, b) * b;
}
const int N = 1e5 + 5;
int n , c[N], tot;
vector <int> edge[N];
int root[N * 32] , lc[N * 32] , rc[N * 32];
ll val[N * 32], cnt[N * 32];
ll ans[N * 32];
void push_up (int x)
{
    if (cnt[lc[x]] > cnt[rc[x]])
    {
        cnt[x] = cnt[lc[x]];
        val[x] = val[lc[x]];
    }
    else if (cnt[lc[x]] < cnt[rc[x]])
    {
        cnt[x] = cnt[rc[x]];
        val[x] = val[rc[x]];
    }
    else
    {
        cnt[x] = cnt[lc[x]];
        val[x] = val[lc[x]] + val[rc[x]];
    }
}
void insert (int& rt , int l , int r , int x , int add)
{
    if (!rt) rt = ++ tot;
    if (l == r)
    {
        cnt[rt] = 1;
        val[rt] = l;
        return ;
    }
    int mid = (l + r) >> 1;
    if (x <= mid)
        insert (lc[rt], l , mid , x , add);
    else
        insert (rc[rt], mid + 1, r , x , add);
    push_up(rt);
}
int merge(int x , int y , int l , int r)
{
    if (!x || !y) return x + y;
    if (l == r)
    {
        cnt[x] += cnt[y];
        val[x] = l;
        return x;
    }
    int mid = (l + r) >> 1;
    lc[x] = merge(lc[x], lc[y], l, mid);
    rc[x] = merge(rc[x], rc[y], mid+1, r);
    push_up(x);
    return x;

}
void dfs (int u , int fa)
{
    insert (root[u] ,1 , n , c[u] , 1);
    for (auto v : edge[u])
    {
        if (v != fa)
        {
            dfs (v , u);
            root[u] = merge (root[u], root[v], 1, n);
        }
    }
    ans[u] = val[root[u]];
}
int main()
{
    read (n);
    for (int i = 1 ; i <= n ; i ++)
        read (c[i]);
    for (int i = 1 ; i < n  ; i ++)
    {
        int u , v;
        read (u , v);
        edge[u].pb(v);
        edge[v].pb(u);
    }
    dfs (1 , 1);
    for (int i = 1 ; i <= n ; i ++)
        cout << ans[i] << ' ';
    cout << endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值